Demystifying Depth: Learning dynamics in deep linear neural networks

Andrew M. Saxe

Stanford University

Linking learning and plasticity

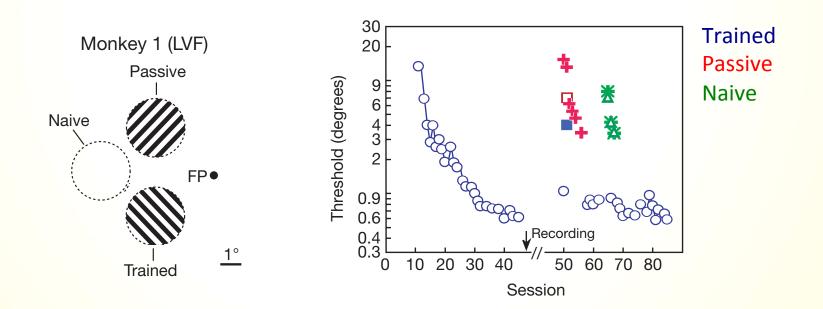
 Humans and other organisms are incredibly sophisticated learners

 Across a variety of tasks, we get much better with practice

 How do changes in synaptic strength across the brain enable this learning?

Perceptual Learning

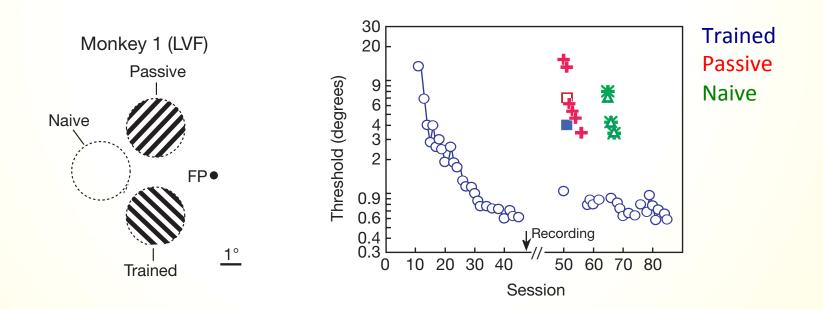
 Practicing orientation discrimination improves behavioral performance



Schoups et al., 2001

Perceptual Learning

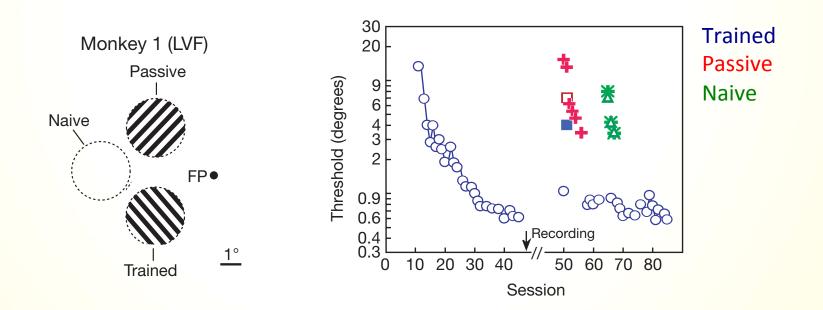
 Practicing orientation discrimination improves behavioral performance



Schoups et al., 2001

Perceptual Learning

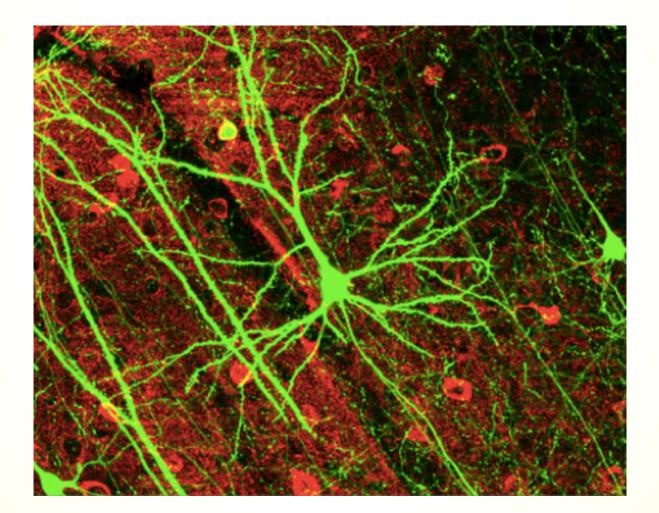
 Practicing orientation discrimination improves behavioral performance



Schoups et al., 2001

The brain

50 billion neurons



100 trillion synapses

Changing connection strengths thought to underlie learning

•

 Challenge: link changes at neural level to changes at behavioral/ psychological level

Depth

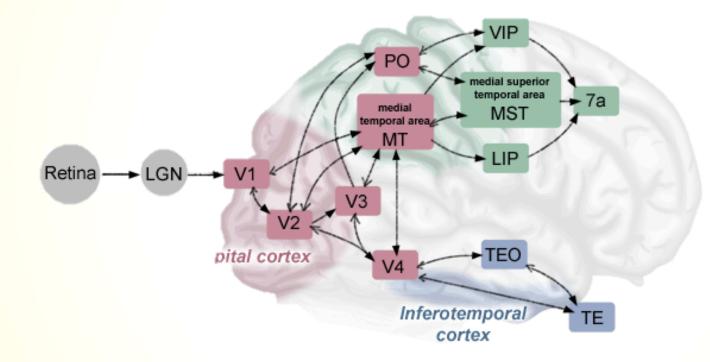
• The brain has a layered structure

Anatomically

Physiologically

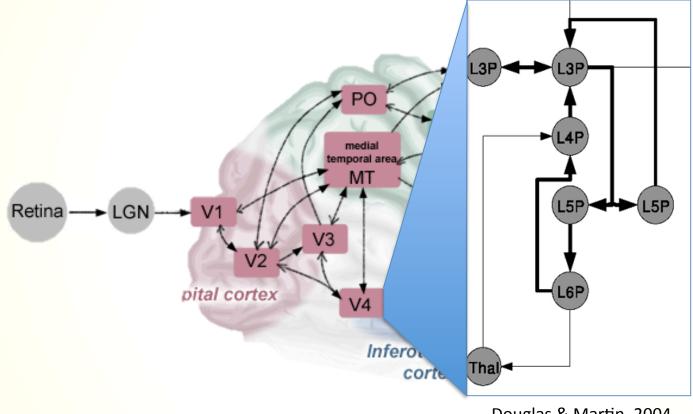
 I will argue this strongly impacts learning dynamics in the brain

Depth: Layered anatomy



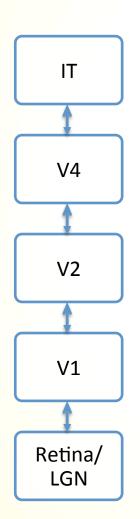
10

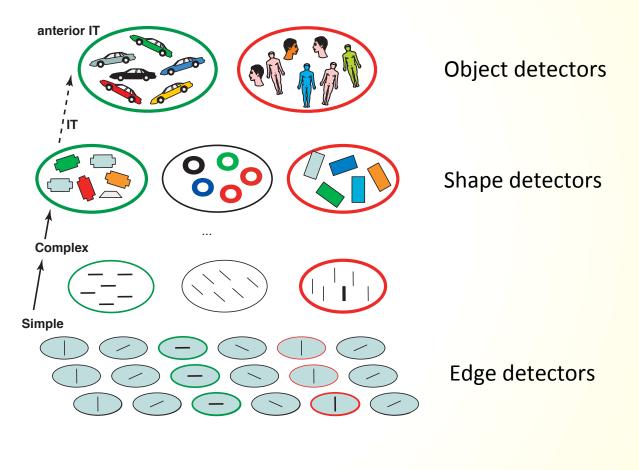
Depth: Layered anatomy



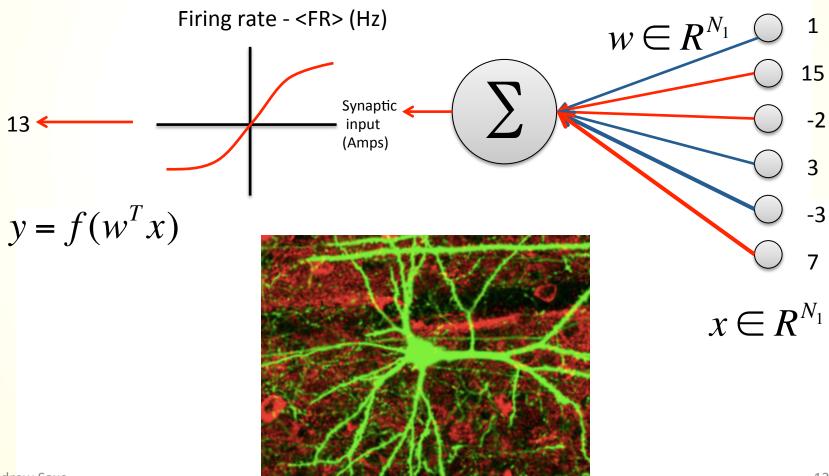
Douglas & Martin, 2004

Depth: Layered physiology

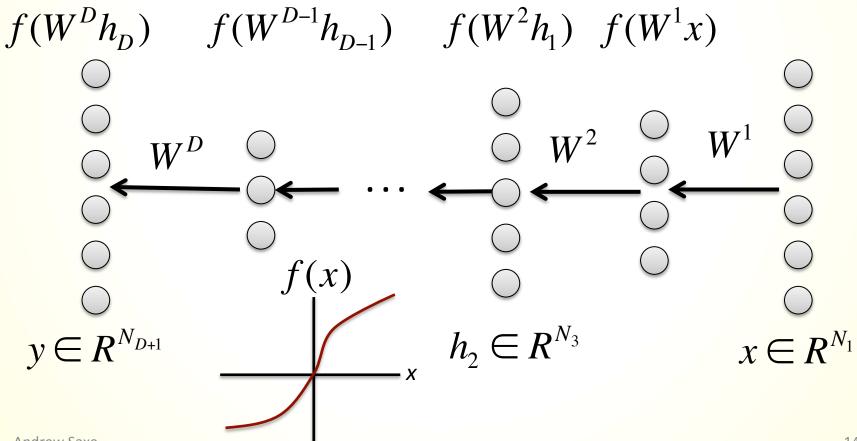




Artificial neurons

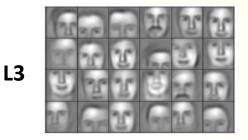


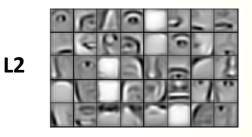
Deep neural networks



Deep learning in AI

- Many-layered artificial neural networks
- Currently state-of-the-art on many real world datasets
 - Object recognition
 - Speech recognition
 - Text processing
- Black boxes
- Nonlinearities resistant to theory





Lee et al., 2009

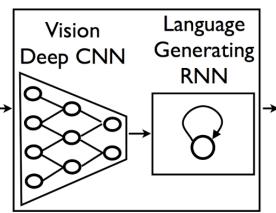
Object Recognition

Decisively state of the art in visual object recognition from images

ImageNet large scale visual recognition challenge, Russakovsky et al., 2014

Andrew Saxe

Image captioning



A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Google Brain, Vinyals et al., 2014

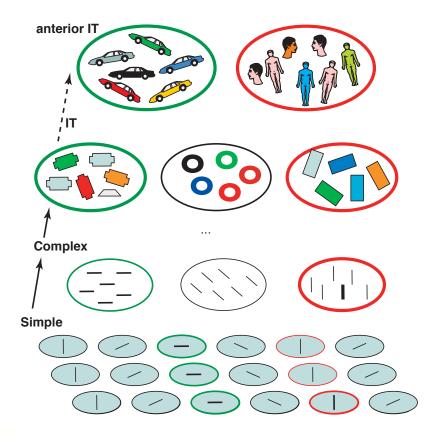
Why depth?

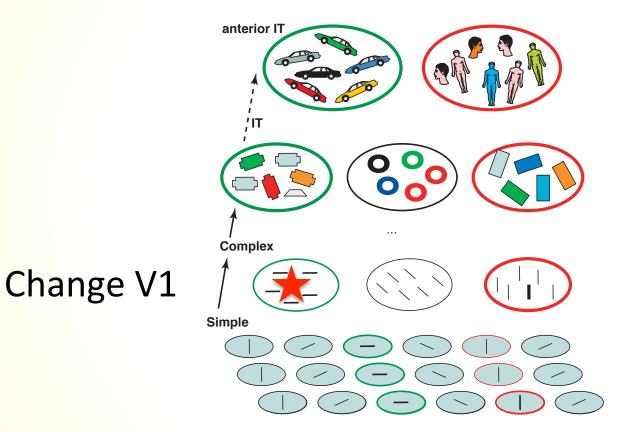
- Compactly represent complex input-output functions
- Divide and conquer: slowly build up complexity by composing simple elements
- Transform inputs/outputs into suitable internal representation
- High performance on benchmark tasks

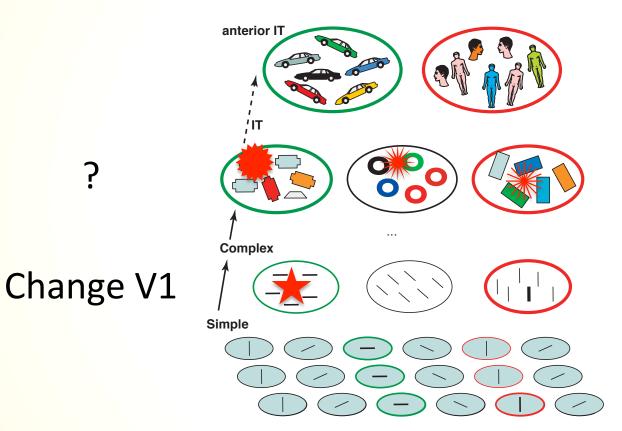
Depth complicates learning

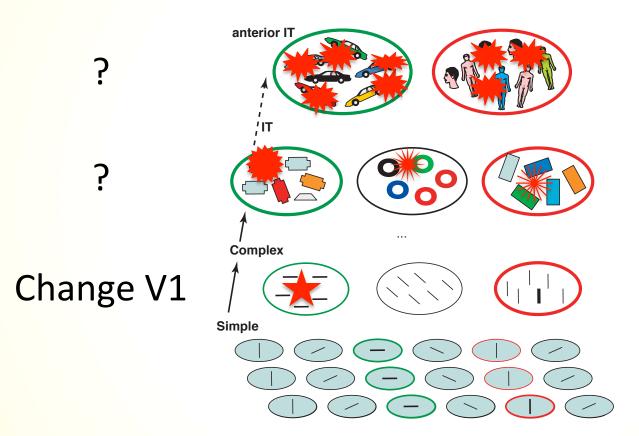
 Must choose distribution of changes across layers

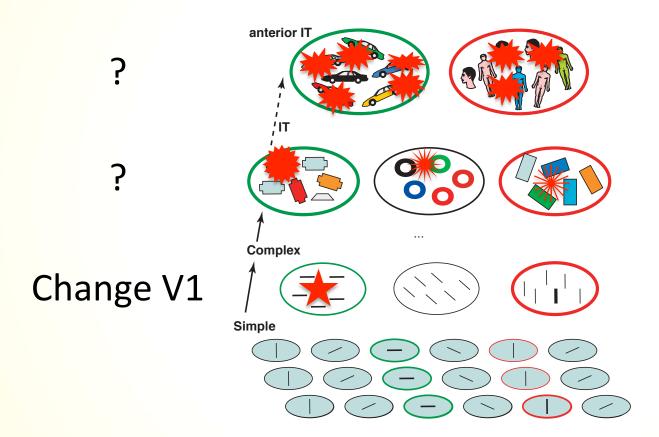
- Introduces
 - Coupling
 - Symmetries
- Learning often much slower



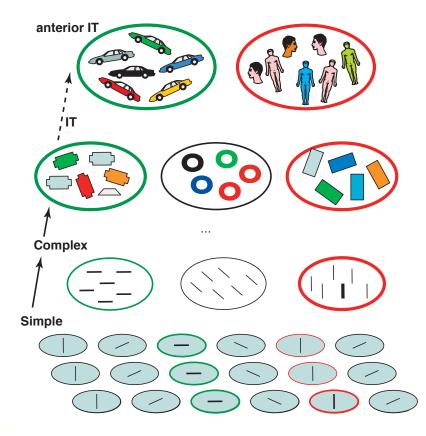


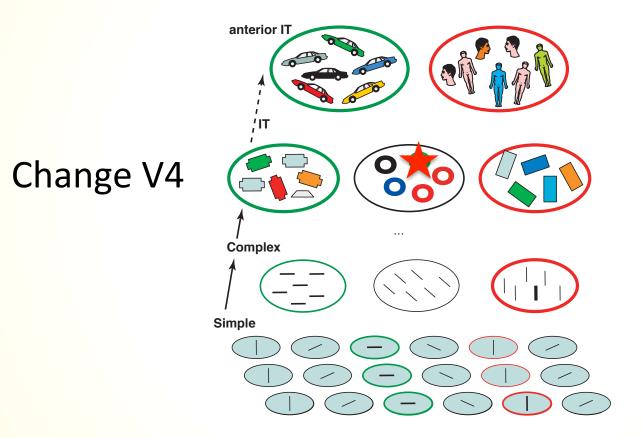


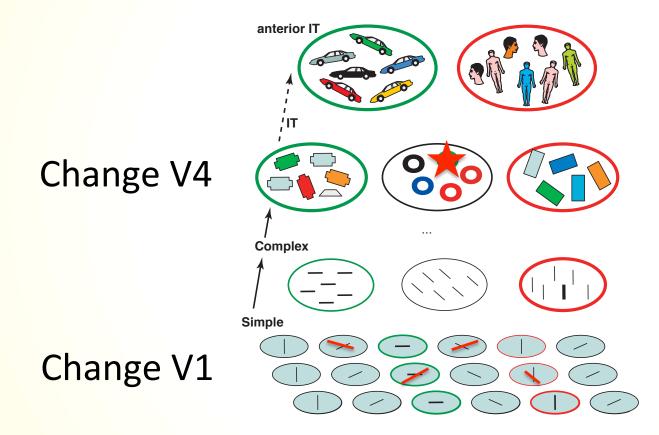


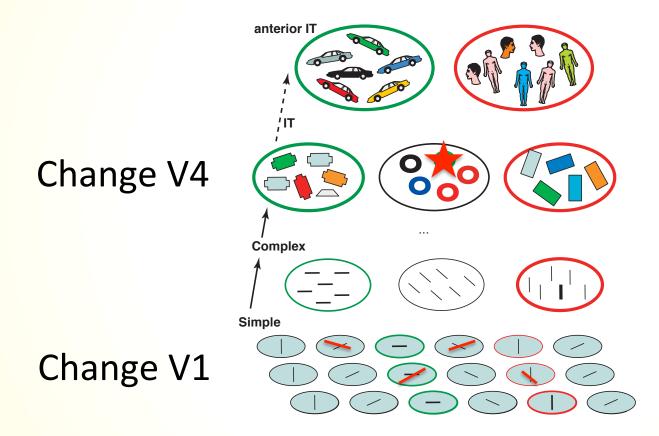


Must consider how a change propagates to output



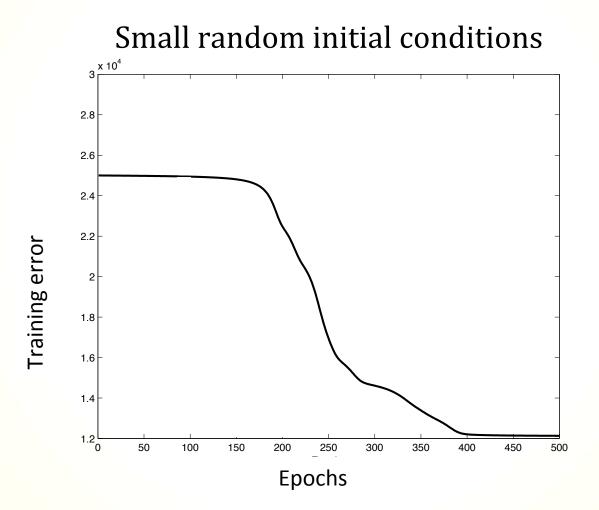






Many equivalent changes—must choose one

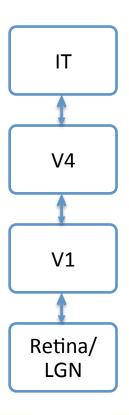
Slow learning



Breakthrough: Unsupervised layerwise pretraining

Suppose you want to recognize faces.

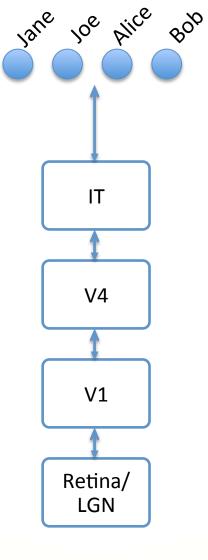
First learn a rich hierarchy of general purpose features for the visual world.



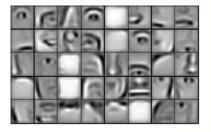
N	1	1	1		I		ł	1	1	1	/
N	1		1	١	1	ľ	N	ľ	11		1

Supervised fine tuning

Then learn the actual task you care about.



Be	20	30	Y	r	Y
h	20	Ľ	6	10	(10)
1	E	Ľ	8	2	r
r)	RE	Ľ	68	1C)	

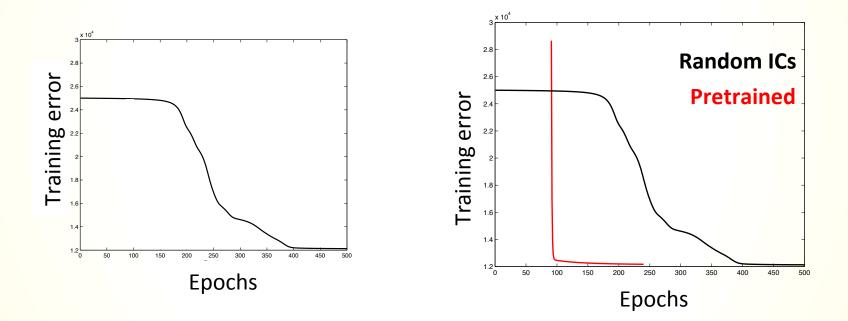


N	1	1	1		I	1	L	1	1	1	1
N	1	0	1	١	5	I	N	ľ	11		1

Faster deep learning

Small random initial conditions

Pretrained initial conditions



Computational hypotheses

- **H1:** Depth enables compact representation of complex tasks
- **H2:** Naïve deep learning is slow
- **H3:** Unsupervised layerwise pretraining speeds deep learning
- **H4:** Unsupervised pretraining improves generalization
- **H5:** Supervised fine tuning follows gradient direction
- **H6:** Domain general approach

Understanding Depth

What is the specific impact of depth on learning dynamics?

Understanding Depth

 What is the specific impact of depth on learning dynamics?

 Wanted: Theory that describes size & timing of changes across layers

Outline

Part 1: Theory of deep linear learning

- Part 2: Applications
 - Critical period plasticity
 - Perceptual learning
 - Semantic cognition
 - Perceptual decisions
 - Reinforcement learning

Towards a theory of deep learning dynamics

– What is learned when?

– How does learning speed scale with depth?

 How do different weight initializations impact learning speed?

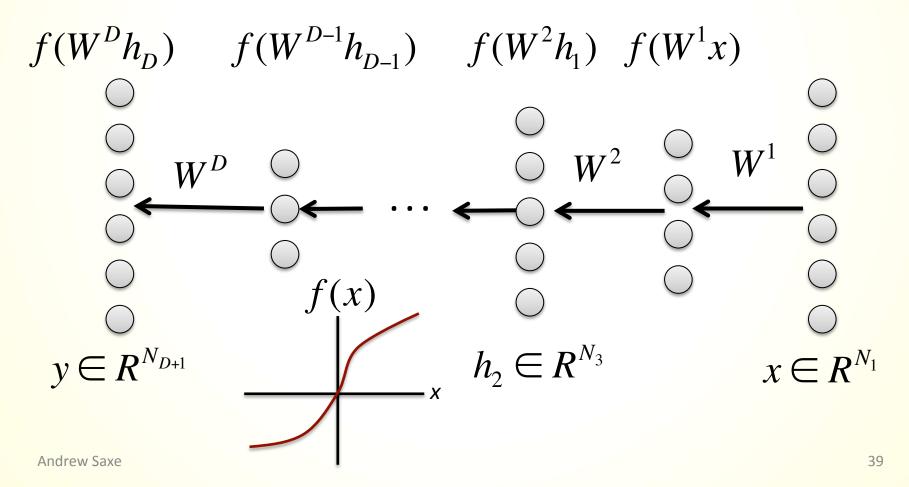
Deep linear neural networks

Develop theory using a simple model class

- Particularly for brain sciences, crucial to have a minimal, tractable model
 - Conceptual clarity
 - Unambiguous predictions
 - Isolate contribution of depth

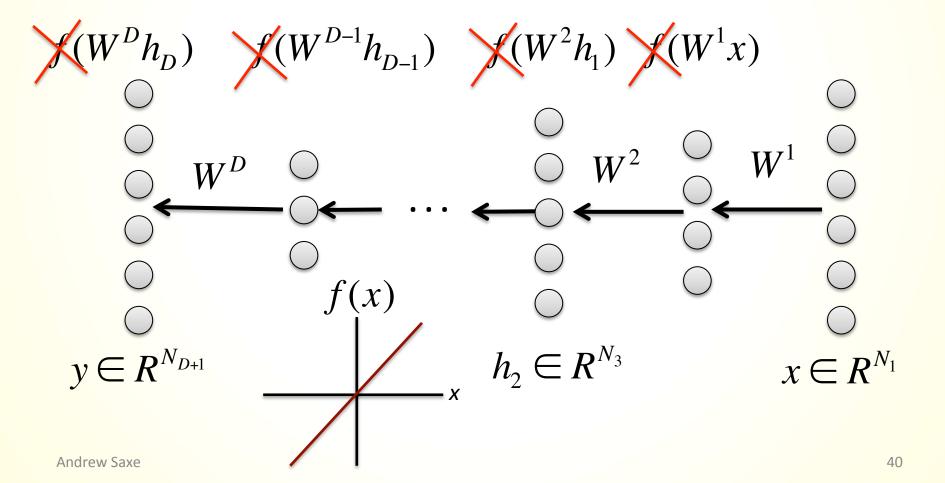
Deep network

 Little hope for a complete theory with arbitrary nonlinearities



Deep *linear* network

Use a deep *linear* network as a starting point.



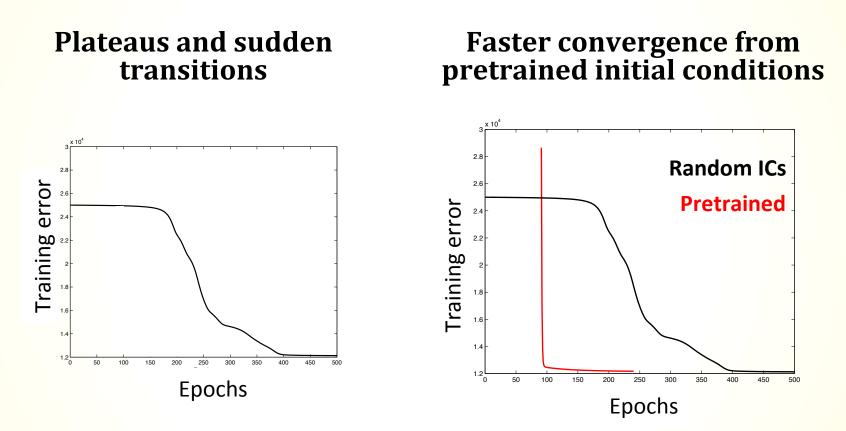
Deep *linear* network

• Input-output map: Always linear

$$y = \left(\prod_{i=1}^{D} W^{i}\right) x \equiv W^{tot} x$$

• Isolates impact of depth—little else going on

Trivial?



- Build intuitions for nonlinear case by analyzing linear case
- Will give exact analytic description of these error curves

Gradient descent learning

• Minimize squared error on data $\{x^{\mu}, y^{\mu}\}, \mu = 1, ..., P$.

$$\sum_{\mu} \left\| y^{\mu} - \left(\prod_{i=1}^{D} W^{i} \right) x^{\mu} \right\|^{2}$$

Gradient descent dynamics: Nonlinear; coupled; nonconvex

$$\Delta W^{l} = \lambda \sum_{\mu=1}^{P} \left(\prod_{i=l+1}^{D} W^{i}\right)^{T} \left[y^{\mu} x^{\mu T} - \left(\prod_{i=1}^{D} W^{i}\right) x^{\mu} x^{\mu T}\right] \left(\prod_{i=1}^{l-1} W^{i}\right)^{T} l = 1, \cdots, D$$

• Useful for studying *learning dynamics*, not representation power.

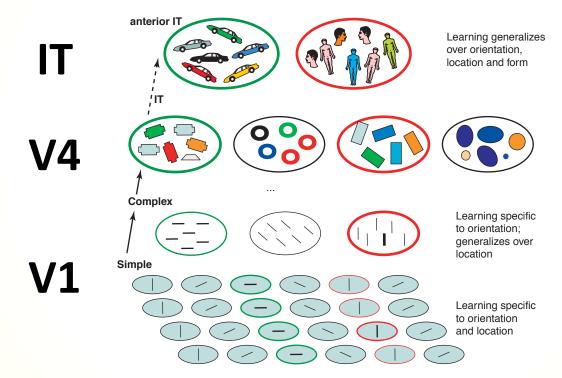
Gradient Descent Learning

Make small change in weights that most rapidly improves task performance



Resolving symmetries

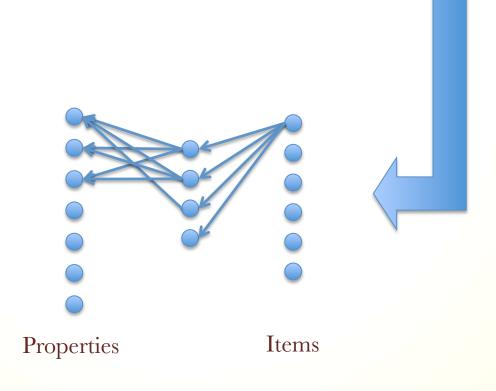
• Could change IT; Could change V1

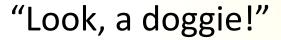


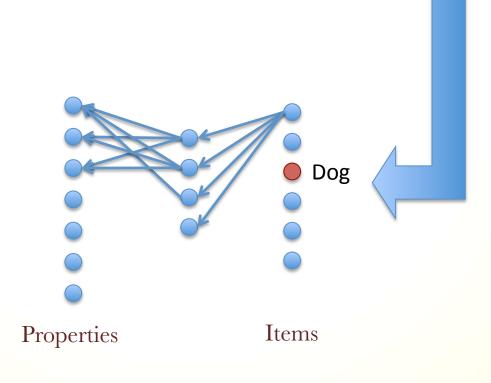
What would most rapidly improve task performance?

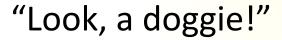
Ahissar & Hochstein, 2004

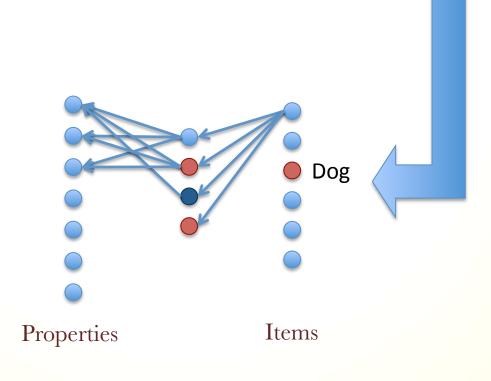
"Look, a doggie!"



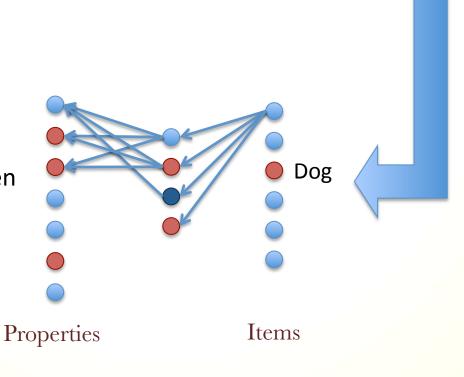






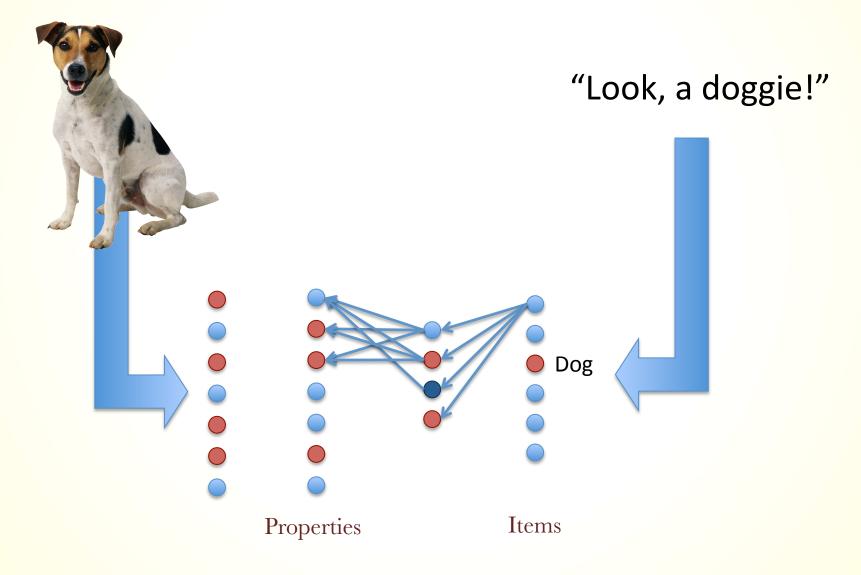


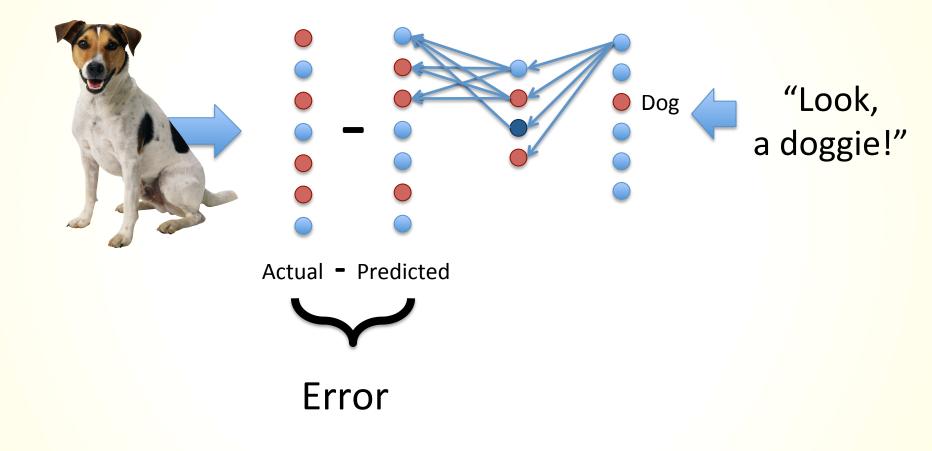
"Look, a doggie!"

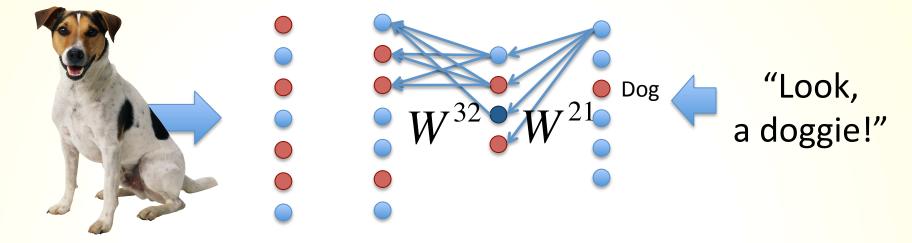


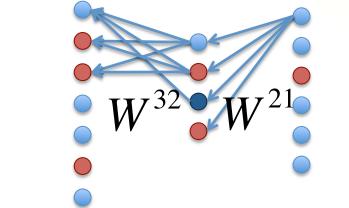
Guess properties given current connections

Observed properties

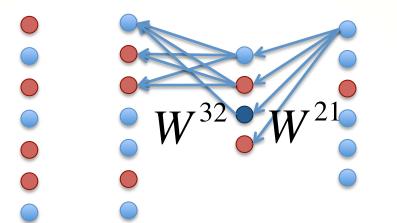




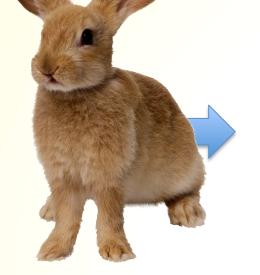


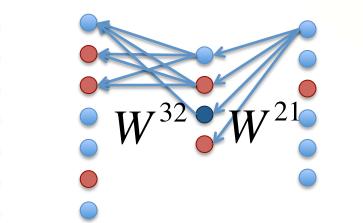


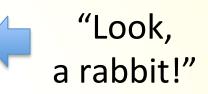
Look, a goose!"

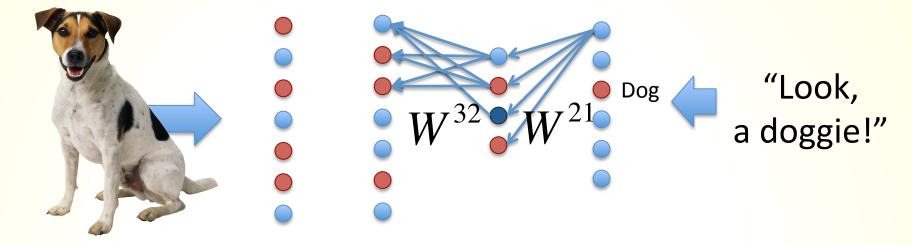


"Look, a horse!"



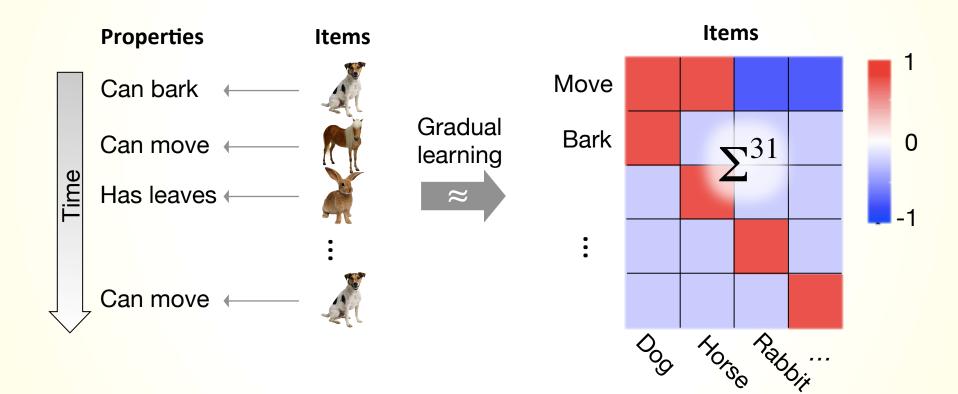




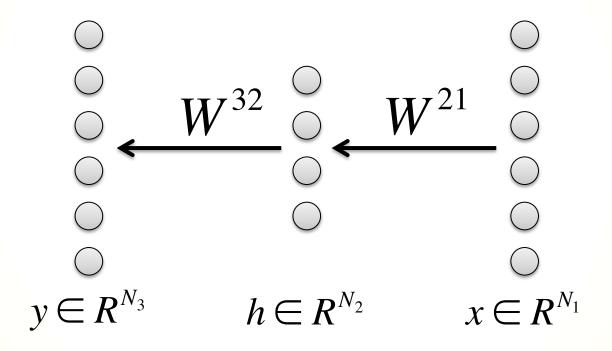


- Each experience changes weights a little
- Many small changes accumulate

From individual episodes to integrated correlations



Three layer dynamics



Problem formulation

- Network trained on patterns $\{x^{\mu}, y^{\mu}\}, \mu = 1, ..., P$.
- Batch gradient descent on squared error $||Y W^{32}W^{21}X||_F^2$
- Dynamics

$$\tau \frac{d}{dt} W^{21} = W^{32^T} \left(\Sigma^{31} - W^{32} W^{21} \Sigma^{11} \right)$$

$$\tau \frac{d}{dt} W^{32} = \left(\Sigma^{31} - W^{32} W^{21} \Sigma^{11} \right) W^{21^T}$$

Input correlations: Input-output correlations:

$$\Sigma^{11} \equiv E[xx^T] = I$$
$$\Sigma^{31} \equiv E[yx^T]$$

(see paper for more general input correlations)

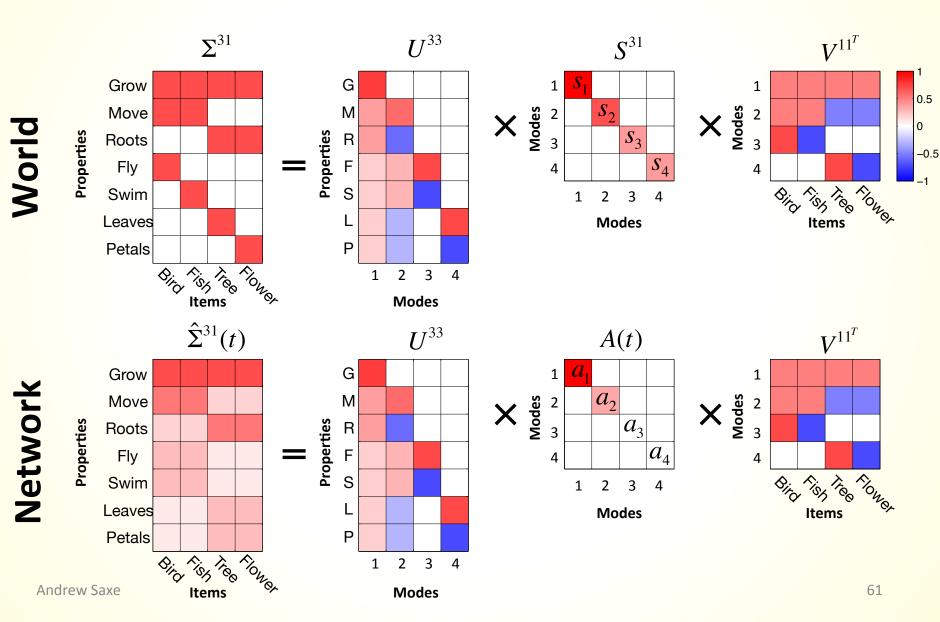
Fixed points (Baldi & Hornik, 1989)

- All fixed points are global minima or saddle pts
- As $t \rightarrow \infty$, weights approach

$$W^{32}(t)W^{21}(t) \longrightarrow \Sigma^{31} = U^{33}S^{31}V^{11T} = \sum_{\alpha=1}^{N_1} s_{\alpha}u^{\alpha}v^{\alpha T}$$

- (Baldi & Hornik, 1989; Sanger, 1989)
- Well-known end point of learning
- But what dynamics occur along the way?

SVD change of variables



Analytic learning trajectory

SVD of input-output correlations:

$$\Sigma^{31} = U^{33} S^{31} V^{11^T} = \sum_{\alpha=1}^{N_1} s_{\alpha} u^{\alpha} v^{\alpha T}$$

Network input-output map:

$$W^{32}(t)W^{21}(t) = \sum_{\alpha=1}^{N_2} a(t, s_{\alpha}, a_{\alpha}^0) u^{\alpha} v^{\alpha T}$$

- Starting from balanced, decoupled initial conditions
- Each mode evolves independently

 $a(t, s, a_0) = \frac{se^{2st/\tau}}{e^{2st/\tau} - 1 + s/a_0}$ where 200 Simulation Theory $a(t,s,a_{0})$ 150 100 50 0 0 200 400 600 62 Epochs

1/Learning rate

Singular value

Initial mode strength

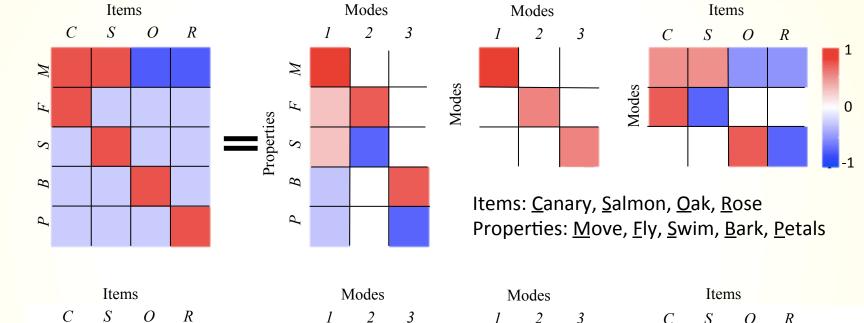
τ

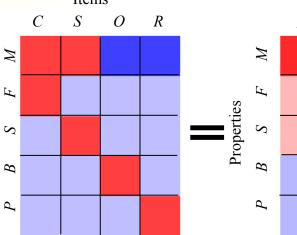
S

 a_{0}

Andrew Saxe

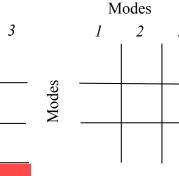
Learning dynamics

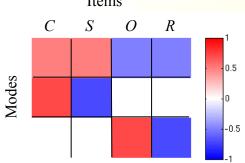




World

Network

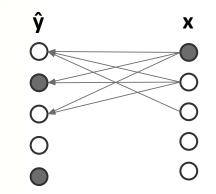


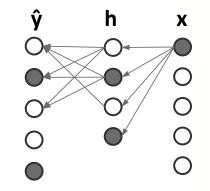


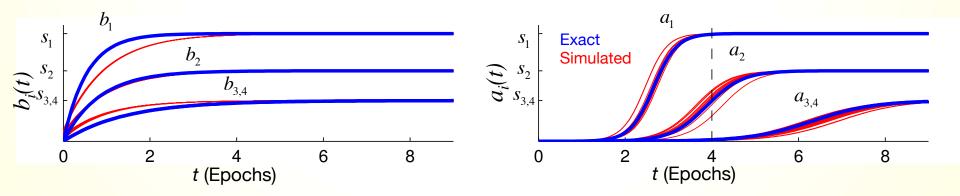
Learning dynamics

Shallow

Deep







Andrew Saxe

Timescale of learning

• Each mode is **learned in time** $O(\tau/s)$

τ 1/Learning rates Singular value

 Singular values of input-output correlations determine learning speed

Deeper networks

- Can generalize to arbitrary depth network
- Each effective singular value *a* evolves independently according to

$$\tau \frac{d}{dt}a = (N_l - 1)a^{2 - 2/(N_l - 1)}(s - a)$$

τ	1/Learning rate
s	Singular value
N,	# layers

• In deep networks, combined gradient is $O(N_l/\tau)$

Optimal learning rate scaling

- Deep net learning time depends on optimal (largest stable) learning rate
- Estimate by taking inverse of maximal eigenvalue of Hessian over relevant region
- Optimal learning rate scales as $O(1/N_i)$ (N_i = # layers)

Deep linear learning speed

How does learning speed retard with depth?

Time difference for deep net vs 3 layer net is

$$t_{\infty} - t_3 \approx O(s \,/\, a(0))$$

S	Singular value
a(0)	Initial mode strength

 Very deep linear network can be only a finite time slower than shallow one!

-For special initial conditions and O(1) initial mode strength

Deep linear learning speed

• Intuition:

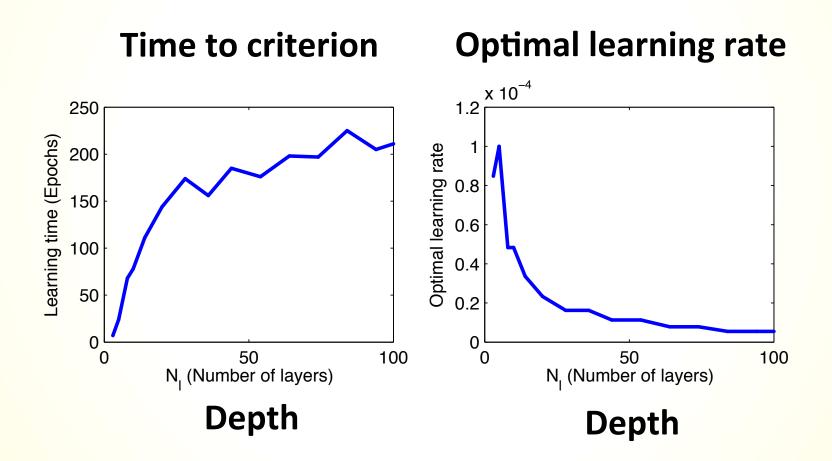
- Gradient norm $O(N_l)$

- Learning rate $O(1/N_l)$ (N_l = # layers)
- Learning time O(1)
- Deep learning can be fast with the right ICs.

MNIST learning speeds

- Trained deep *linear* nets on MNIST digit classification
- Depths ranging from 3 to 100
- 1000 hidden units/layer (overcomplete)
- Decoupled initial conditions with fixed initial mode strength
- Batch gradient descent on squared error
- Optimized learning rates for each depth
- Calculated epoch at which error fell below fixed threshold

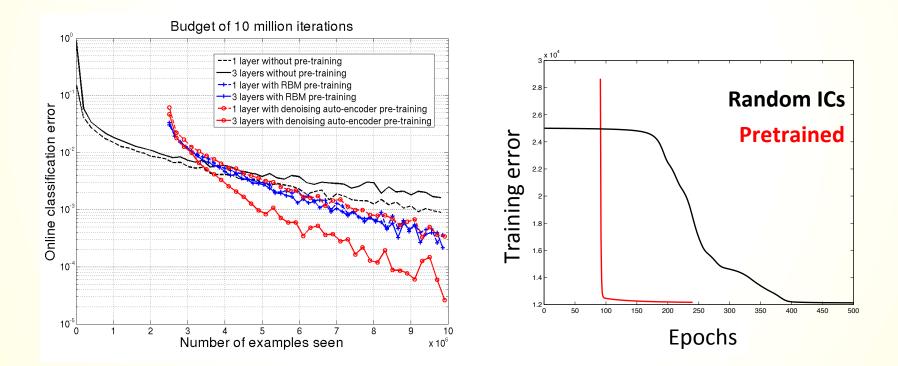
MNIST learning speeds



Why is unsupervised pretraining fast?

Erhan et al., 2010

Deep linear network

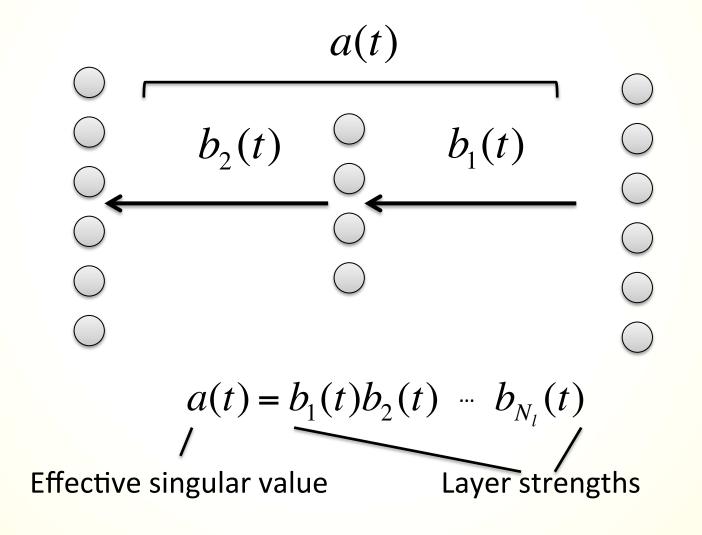


The crucial question: Initial mode scaling

- Learning speed $t_{\infty} t_3 \approx O(s / a(0))$
- If *a(0)* gets smaller with more layers, deep learning is slow

If *a(0)* stays constant with more layers, deep learning is fast

Why are small random weights slow?



Why are small random weights slow?

- Learning delay $t_{\infty} t_3 \approx O(s / a(0))$
- Initial scaling $a(0) = b_1(0)b_2(0) b_{N_l}(0) \approx O(c^{N_l})$ c < 1
- Learning is slow due to very small initial conditions—stuck on plateau right by saddle pt
- Not due to saturating nonlinearities

Deep linear unsupervised pretraining

Pretraining with autoencoders is simple

Each weight matrix comes to be orthogonal

Why are pretrained weights fast?

- Learning delay $t_{\infty} t_3 \approx O(s / a(0))$
- Pretraining initializes all $b_i(0)=1$
- Initial scaling $a(0) = b_1(0)b_2(0) b_{N_l}(0) \approx O(1)$
- Learning is fast—have moved away from saddle pt

The effect of pretraining

Direct training time scales exponentially with depth

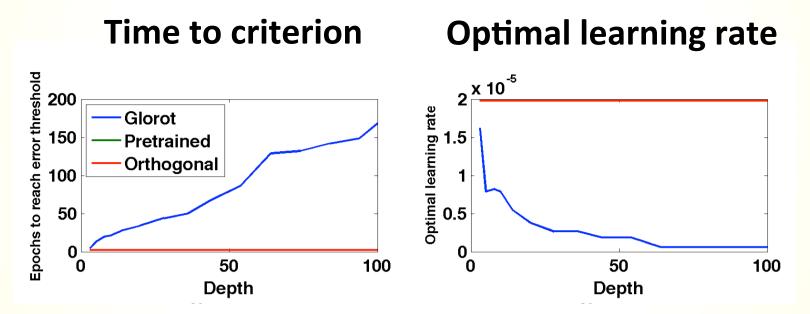
$$t_{DT} \approx O\left(\frac{1}{b_0^{N_l}}\right)$$

 Pretraining + fine-tuning time scales linearly with depth

$$t_{PT+FT} \approx O\left(N_l \log\left(\frac{1}{b_0^2 \varepsilon}\right)\right)$$

Depth-independent training time

- Deep linear networks on MNIST
- Glorot: Scaled random initialization (Glorot & Bengio, 2010)

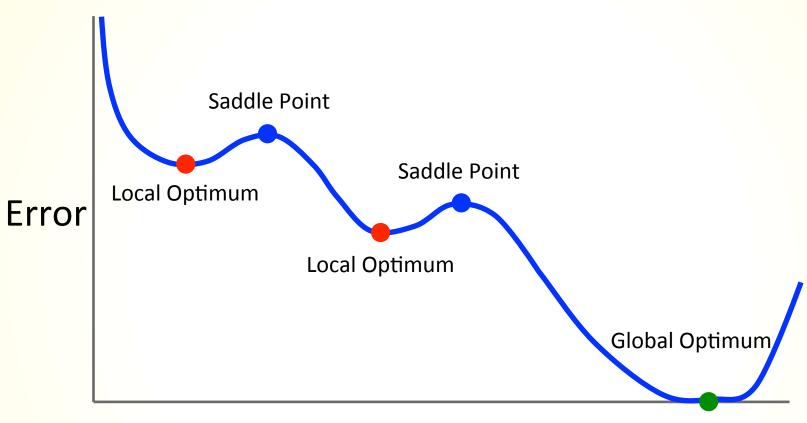


 Pretrained and orthogonal have fast depth-independent training times!

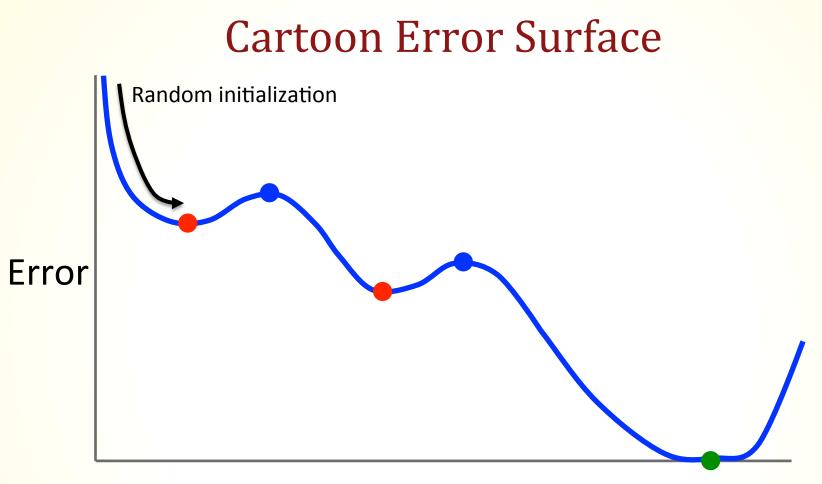
Revised conceptual picture

- Nonlinearities not the culprit
 - Naïve deep learning is slow even in the absence of
 - local minima
 - saturating nonlinearities
- Plateaus near saddle points are the culprit
 - Layer strengths close to zero, when multiplied together, are exponentially closer

Cartoon Error Surface



Parameter

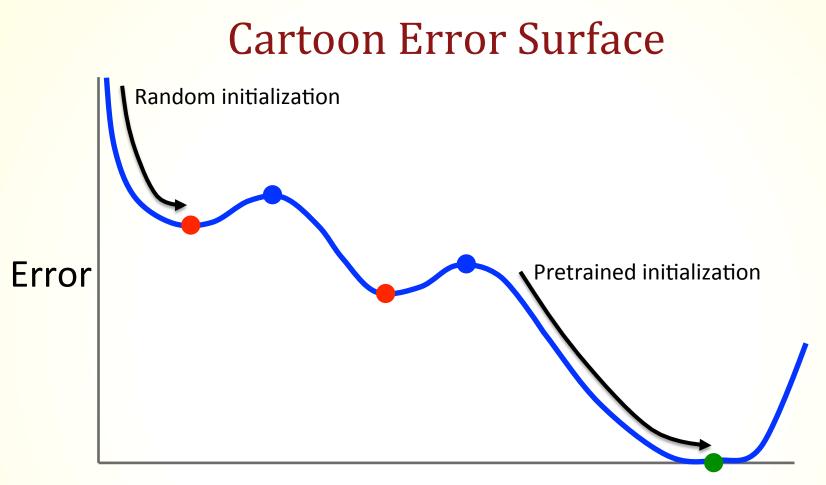


Parameter

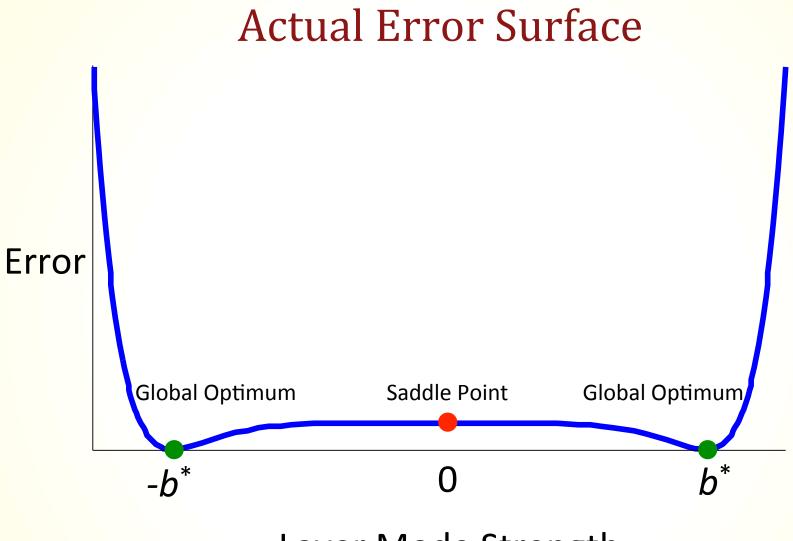
Previous Intuition

 Overwhelmingly likely to end in local minimum

 Unsupervised pretraining combats this by starting in good basin of attraction



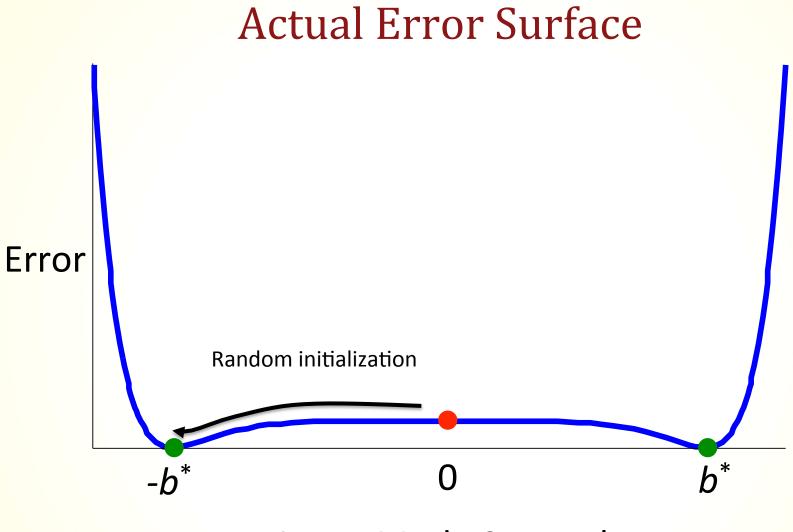
Parameter



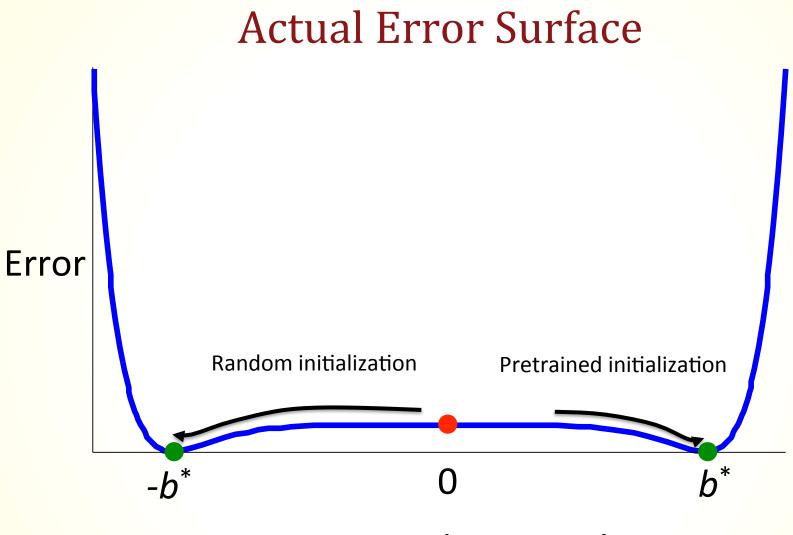
Layer Mode Strength

Actual Error Surface

- No local optima
- All minima are global minima
- (Baldi & Hornik, 1989)
- Gets stuck on plateau near saddle point
- Unsupervised pretraining combats this by increasing initial scaling



Layer Mode Strength



Layer Mode Strength

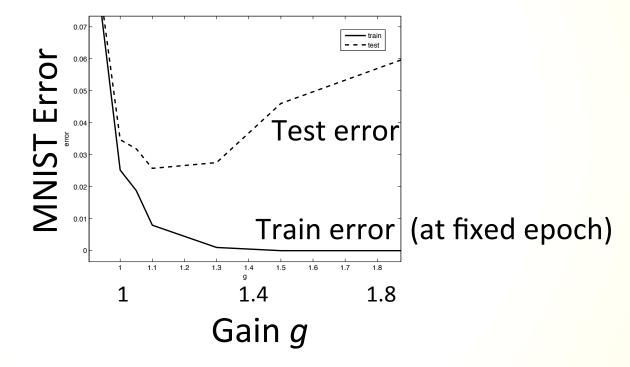
Nonlinear deep networks?

 Theory describes how deep linear networks behave

Need to verify behavior in nonlinear nets

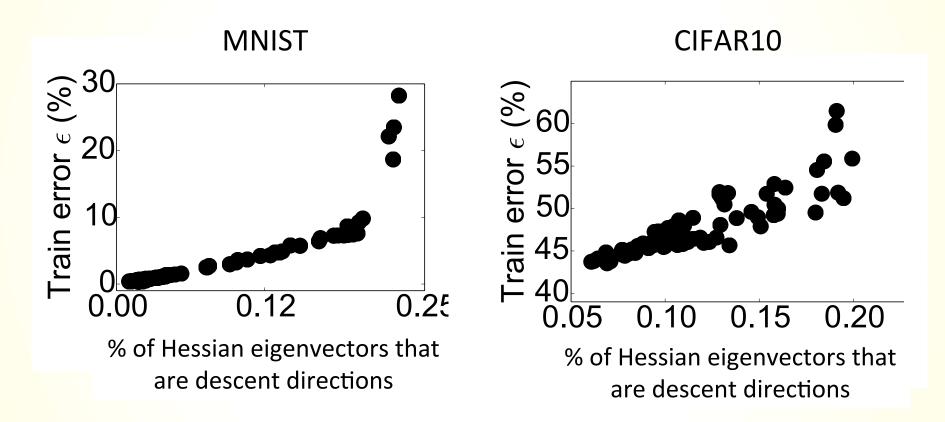
30 layer tanh networks

- Deep networks + large initializations train exceptionally quickly
- Can compute gain g necessary to overcome compressive nonlinearities



 These improved initializations have played a part in recent SOTA systems (He et al., 2015; van den Oord et al., 2015; Le et al., 2015).

Few local minima, many saddle points



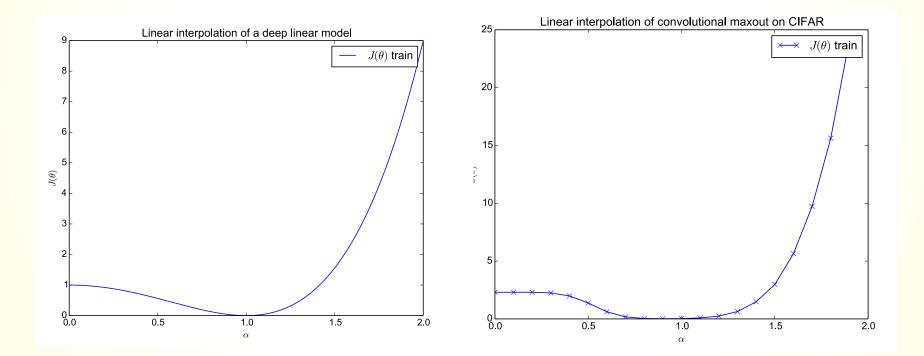
Dauphin et al., "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization." Arxiv, 2014

Andrew Saxe

Qualitatively similar error surface

Deep Linear Network

SOTA Conv. Maxout Network



Summary of theory

- What is learned when?
 - Modes of the SVD learned in time 1/s
- How does learning speed scale with depth?
 - Direct training scales exponentially

$$t_{DT} \approx O\left(\frac{1}{b_0^{N_l}}\right)$$

Layerwise pretraining + fine-tuning scales linearly

$$t_{PT+FT} \approx O\left(N_l \log\left(\frac{1}{b_0^2 \varepsilon}\right)\right)$$

Outline

Part 1: Theory of deep linear learning

- Part 2: Applications
 - Critical period plasticity
 - Perceptual learning
 - Semantic cognition
 - Perceptual decisions
 - Reinforcement learning

Intentional action

"Every animal is, in some degree at least, a perceiver and a behaver." JJ Gibson

Deep learning models are largely perceptual

• What about action selection?

Deep learning for action selection?

- Key intuitions of deep learning approach don't hold in traditional control models
 - No compositionality
 - No layered, hierarchical structure
 - No model that supports distributed representations of tasks, goals, ...
 - Discrete action spaces

Markov decision processes

A Markov decision process is one mathematical formulation of an optimal control problem. It is defined by four objects (X, U, p(y|x, u), l(x, u))

- X is the state space
- U is the action space
- p(y|x, u) are the transition probabilities
- l(x, u) is the immediate cost for being in state x and choosing action uOur goal is to choose a policy $\pi(x)$ mapping states to actions that minimizes

$$v^{\pi}(x) = \mathop{\mathbf{E}}_{y_0=x} \left[\sum_{\tau=0}^{t_f-1} l(y_{\tau}, \pi(y_{\tau})) \right]$$

Optimal cost-to-go function

- The optimal cost-to-go function is the expected cumulative cost for starting at state x and acting optimally thereafter
- It encodes all relevant information about the future
- In particular, acting greedily with respect to the optimal cost-to-go function is perfectly optimal

Cost-to-go:
$$v^{\pi^*}(x) = \mathop{\mathbf{E}}_{y_0=x} \left[\sum_{\tau=0}^{t_f-1} l(y_{\tau}, \pi^*(y_{\tau})) \right]$$

Optimal action: $\pi^*(x) = \operatorname{argmin} v^{\pi}(x)$

Dynamic programming principle

- The dynamic programming principle is a statement about the cost-to-go function
- It says that the cost-to-go v(x) for a state x is equal to the instantaneous cost for the optimal action plus the expected cost-to-go of the resulting next state
- This gives the famous Bellman equation

$$v(x) = \min_{u} \left\{ l(x, u) + \mathbf{E}_{y \sim p(\cdot|x, u)} \left[v(y) \right] \right\}$$

Problems?

• Discrete action space

No compositionality

• No hierarchy

Overly flexible cost function

Discrete action space

 Typically, at each time step choose one of M discrete actions

$$v(x) = \min_{u} \left\{ l(x, u) + \mathbf{E}_{y \sim p(\cdot|x, u)} \left[v(y) \right] \right\}$$

Very slow

Curse of dimensionality

(all possible joint angles for shoulder) X (all possible joint angles for elbow) X ...

Discrete action space

 No notion of combining subactions to form a complete action

$$v(x) = \min_{u} \left\{ l(x, u) + \mathbf{E}_{y \sim p(\cdot | x, u)} \left[v(y) \right] \right\}$$

• E.g., muscle synergies

 Need distributed, combinatorial representation of actions

Compositional tasks

 No notion of combining subtasks to accomplish a new task

$$v(x) = \min_{u} \left\{ l(x, u) + \mathbf{E}_{y \sim p(\cdot | x, u)} \left[v(y) \right] \right\}$$

Hierarchy

• No notion of hierarchy

$$v(x) = \min_{u} \left\{ l(x, u) + \mathbf{E}_{y \sim p(\cdot | x, u)} \left[v(y) \right] \right\}$$

Options are hierarchical, but only slightly

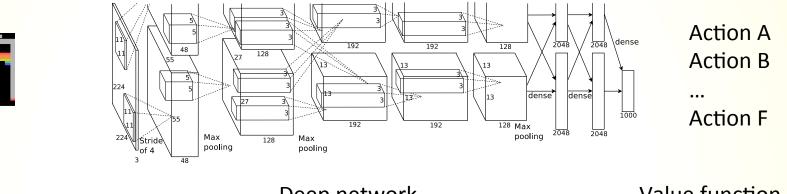
Overflexible cost functions

Problem formulation might be too general

$$v(x) = \min_{u} \left\{ l(x, u) + \mathbf{E}_{y \sim p(\cdot | x, u)} \left[v(y) \right] \right\}$$

 We usually take energetically efficient action

SOTA Example: Atari player



Input

Deep network

Value function

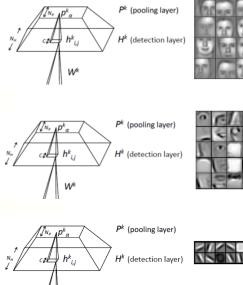
- Deep network predicts ultimate future reward accrued from taking each • action
- 10,000,000 examples, 160,000,000 presentations •
- Works extremely well (often better than human!) ٠
- Change any detail of the task (shooting bad guy now worth 2 points not 1), ٠ have to substantially retrain

Wanted: Composable action selection unit

The RBM of action selection

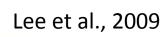
"Forms within forms"

"Acts within acts"



V (visible layer)

Wk

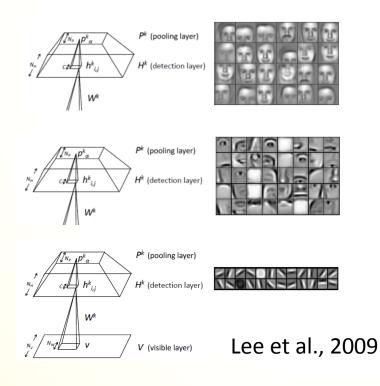


Wanted:

Composable action selection unit

The RBM of action selection

"Forms within forms"



"Acts within acts"

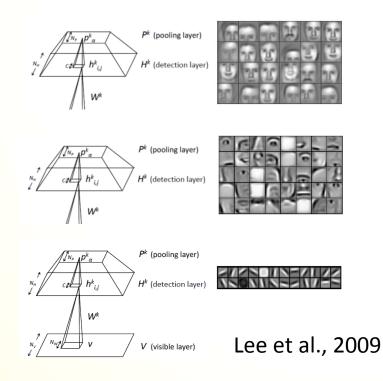
- Graded, non-discrete action space
- Distributed representation of desires/wants
- Blend previously learned information to do novel tasks
- Do action selection, goal inference, and social causal learning
- Nested acts within acts

Wanted:

Composable action selection unit

The RBM of action selection

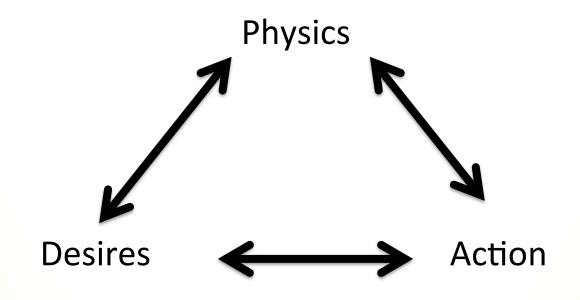
"Forms within forms"



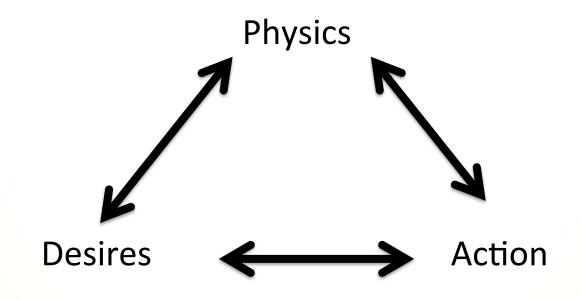
"Acts within acts"

- Graded, non-discrete action space
- Distributed representation of desires/wants
- Blend previously learned information to do novel tasks
- Do action selection, goal inference, and social causal learning
- Nested acts within acts

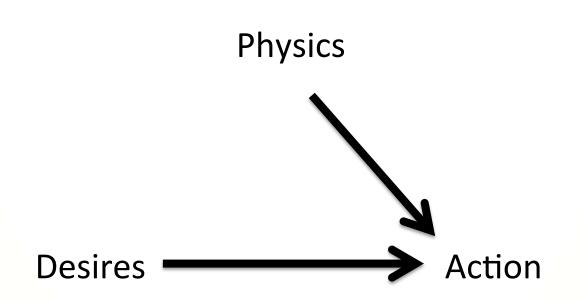
• Instantiates three elements



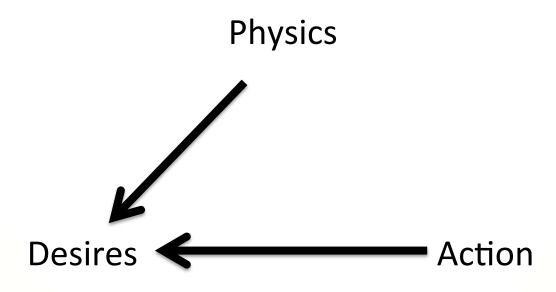
• Given any two, infer third



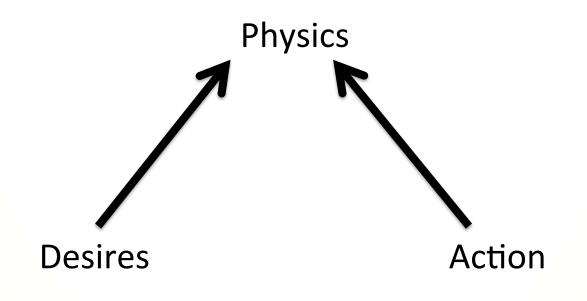
Reinforcement learning

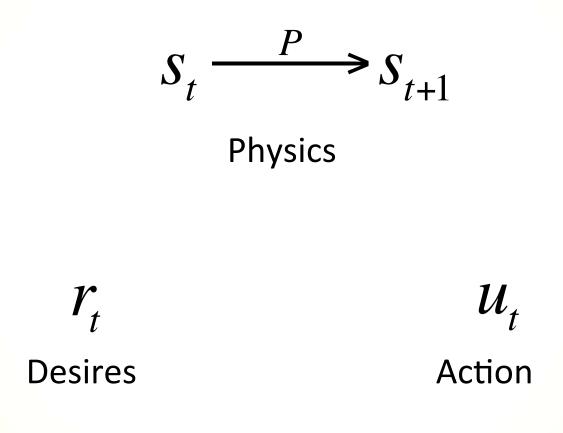


 Goal inference/inverse reinforcement learning



Social causal learning





Physics (causal world structure)

P is transition matrix

 $S_t \xrightarrow{P} S_{t+1}$

One-hot vector

One-hot vector

Desires/goals/wants

 r_t

Vector of:

instantaneous rewards expected for reaching each state

Action

 \mathcal{U}_t

Probability distribution over the next state, \boldsymbol{S}_{t+1}

Action

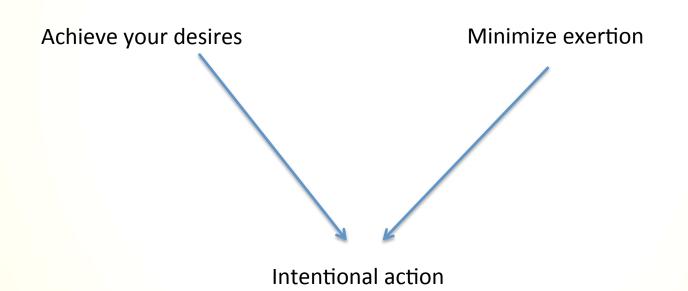
 \mathcal{U}_t

Probability distribution over the next state, \boldsymbol{S}_{t+1}

- Initially may seem odd:
 - if you specify transition probabilities directly, just jump to highest reward state!
- Totally graded notion of actions. Just bias yourself a little more toward the states you want, and away from those you don't.

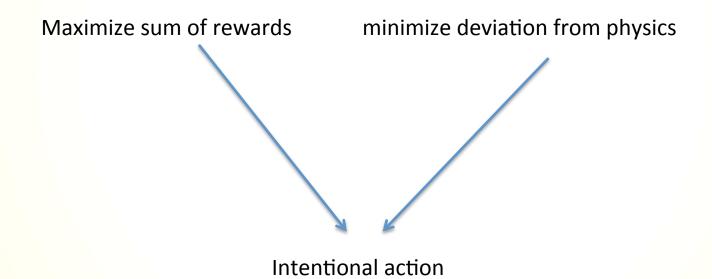
Intentional actions: Balancing reward seeking with effort

Main innovation (Todorov, 2009):



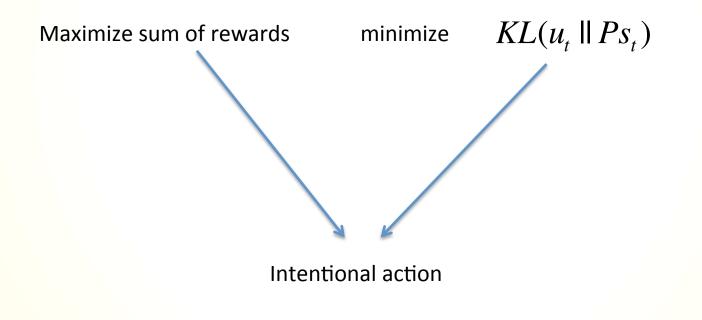
Intentional actions: Balancing reward seeking with effort

Main innovation (Todorov, 2009):



Intentional actions: Balancing reward seeking with effort

Main innovation (Todorov, 2009):



Optimal actions

$$u_t^* = \operatorname*{argmax}_{u_t} \sum_{t} r_t^T s_t - KL(u_t \parallel Ps_t)$$

Can analytically compute this

For LMDPs, optimal action directly computable from cost-to-go function v(x). Define exponentiated cost-to-go (desireability) function: $z(x) = \exp(-v(x))$

Bellman equation *linear* in z:

$$z(x) = \exp(-q(x))\mathbf{E}_{y \sim p(\cdot|x)} \left[z(y) \right]$$

Or $z_i = M z_i + n_b$ where z_i encodes desireability of interior states

Crucial property: Solutions for two different boundary reward structures linearly compose (Todorov, 2009)

$$\tilde{q}_b^{1+2} = a\tilde{q}_b^1 + b\tilde{q}_b^2 \Longrightarrow z_i^{1+2} = az_i^1 + bz_i^2$$

Multitask Z-learning: Learn about a set of boundary reward structures

- represen $\tilde{\mathfrak{A}}_{b}^{c}a \mathfrak{A} \mathfrak{F}$ hew task as a linear combination of these
- optimal z(x) is linear combination of component tasks' $z^{c}(x)$

Compositionality restored!

• Learn about *N* tasks

 Can weight these N tasks together to perform *infinite* variety of composite tasks

Examples coming...

Boundary states

 Only get compositionality at boundary states

Outcome revaluation in sequential choice

• Humans and animals can rapidly adapt to changing rewards in sequential choices (Daw et al., 2011)

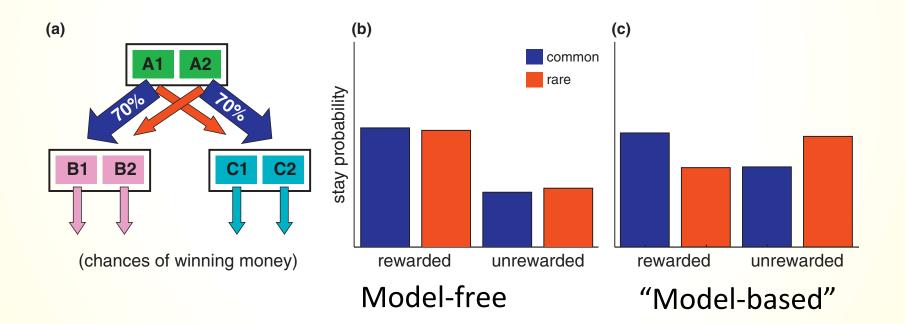
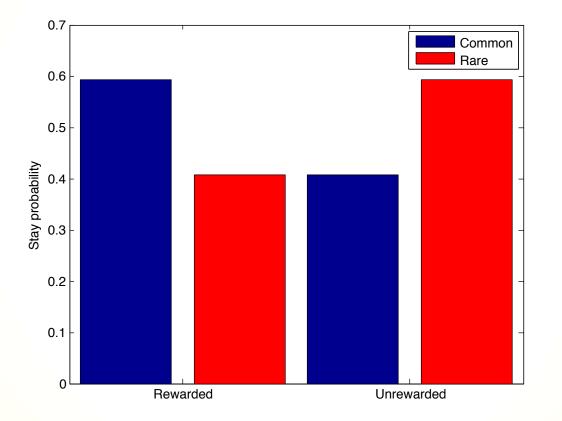


Fig 1, Doll et al., 2012

Multitask Z: Instant outcome revaluation

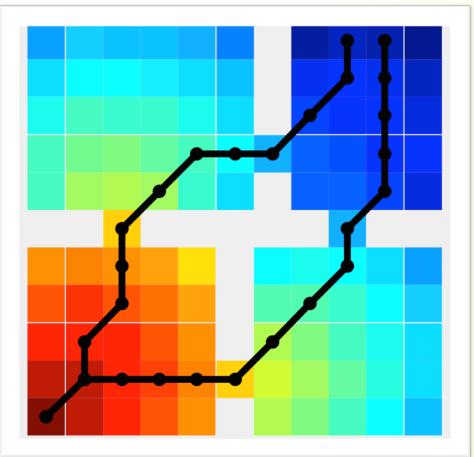


Behaves like model-based methods but no forward search

Latent learning in spatial navigation

After random exploration of a maze environment, introduction of a reward at one location leads to instant goal-directed behavior towards that point (Tolman, 1948)

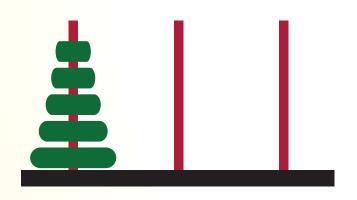
 Covert multitask z-learning during exploration enables immediate navigation to rewarded locations when reward structure becomes known



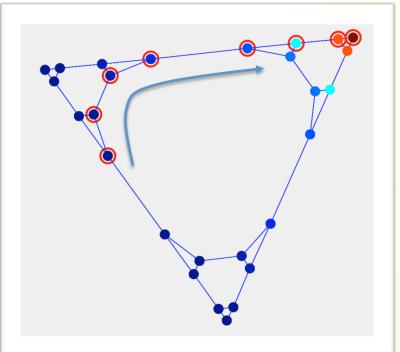
Tower of Hanoi

Applicable to goal-directed action in more complex domains (Diuk et al., 2013)

 Move blocks to peg 3; smaller blocks must always be stacked on larger blocks



 After exploration, multitask Z-learning is capable of navigating to arbitrary configurations

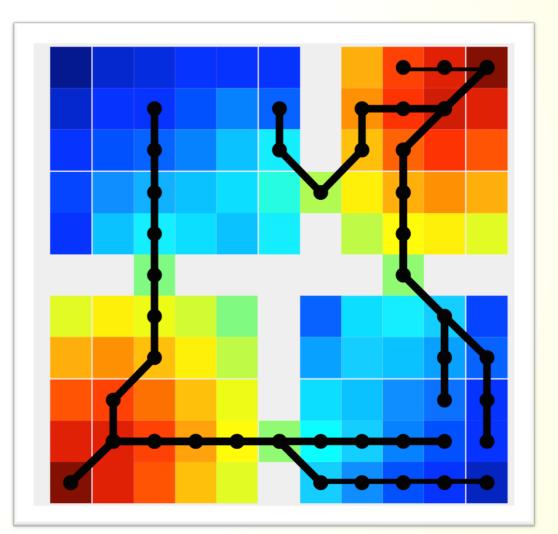


State graph with cost-to-go and optimal trajectory

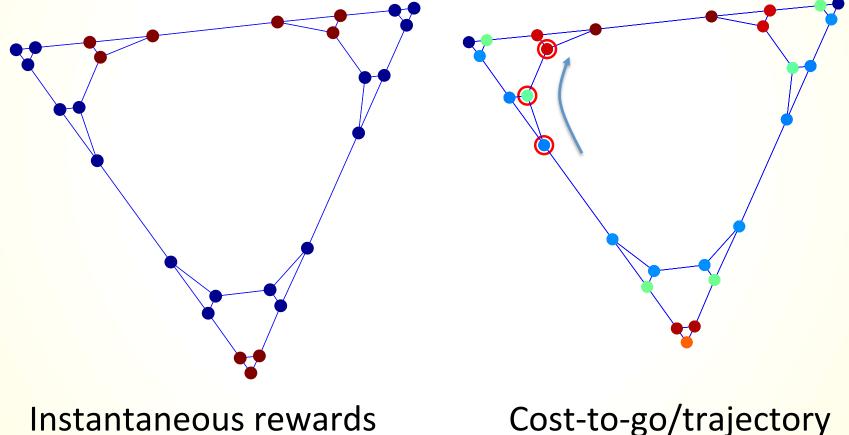
Exploiting compositionality: "Navigate to room A or B"

Can respond flexibly to a variety of navigation tasks

- Find food or water (specific satiety experiments)
- Go to a point, while avoiding door #2
- Important note: Not the same as planning through arbitrary cost map because of boundary state formulation.



"Place medium-size block on middle peg"



5 COST-TO

Exploiting compositionality

Compositionality enables rapid response to *novel* complex queries

- Stack small block on large block
- Place medium block on peg 1, small block on peg 3

- Models highly practiced expert quite familiar with domain
- Can be combined with model-based search

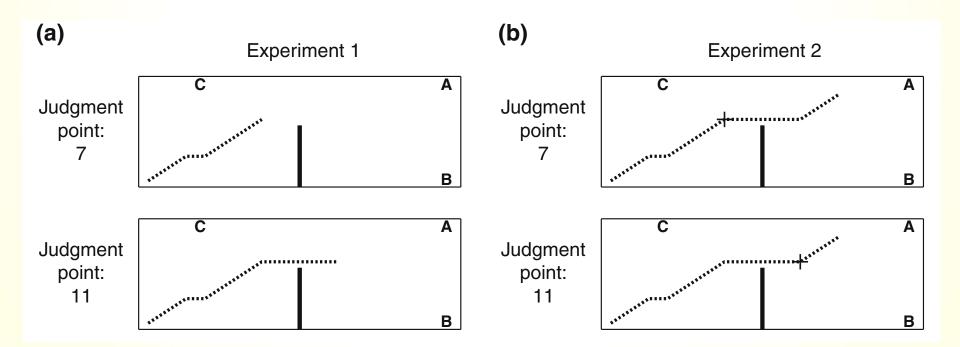
Multitask z-learning for action selection

- New algorithm with interesting properties:
 - Instantaneous optimal adaptation to new terminal state rewards
 - Relies on careful problem formulation to permit compositionality
 - Off-policy algorithm over states (not state/action pairs)
 - Compatible with function approximation

 Compatible with model-based & model-free accounts, which are tractable in the LMDP

Inferring goals/wants/desires

 "Dogs are the sort of agents that like bones" –Tenenbaum

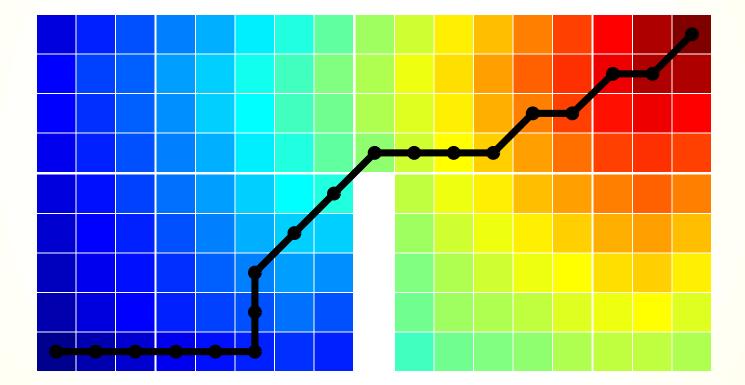


Baker, Saxe, & Tenenbaum, 2009

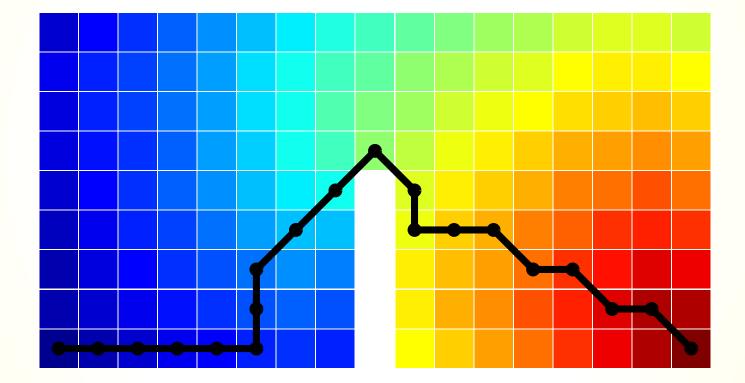
Inferring goals/wants/desires

- Corresponds to *inverse* reinforcement learning (Ng & Russell, 2000; Dvijotham & Todorov, 2010)
- Observe *P* and a trajectory resulting from u_t
- Infer r_t

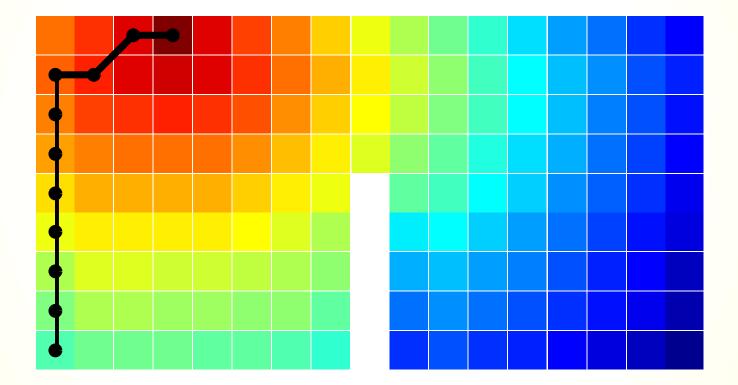
Goal A



Goal B

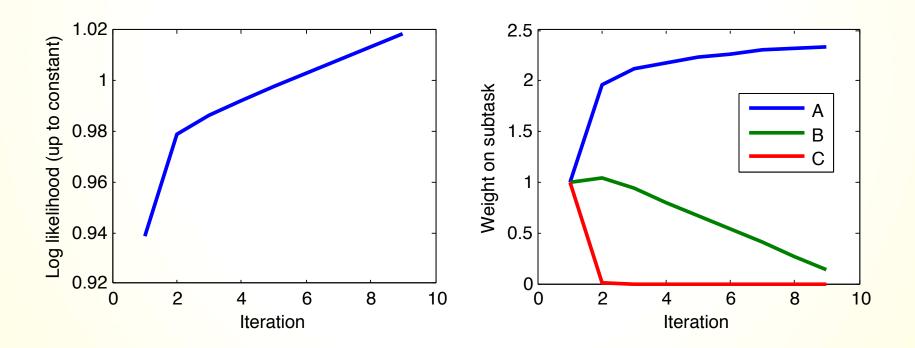


Goal C

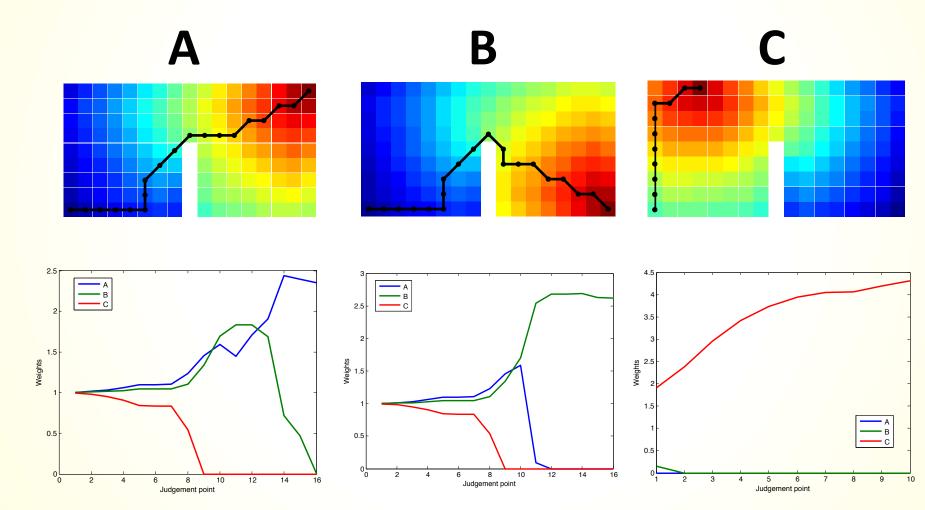


Inference process

Maximize Log Likelihood of task combination weighting



Goal inference

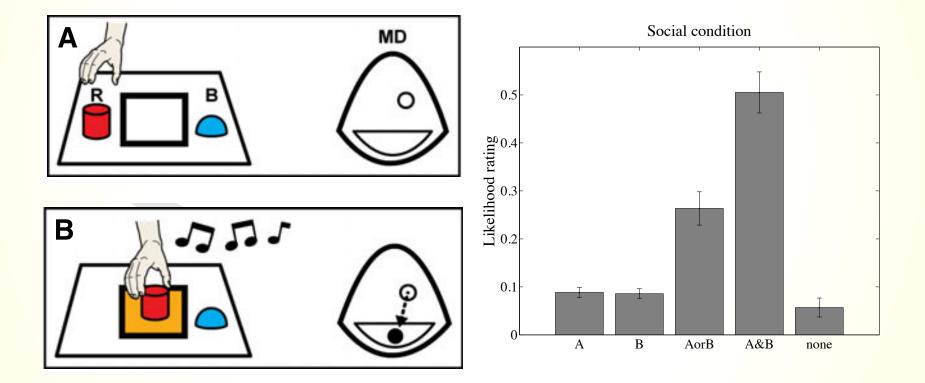


Goal inference

From actions and physics, can infer goals

- Lots left to be done
 - Hierarchically structured actions
 - Changing goals

Social causal learning

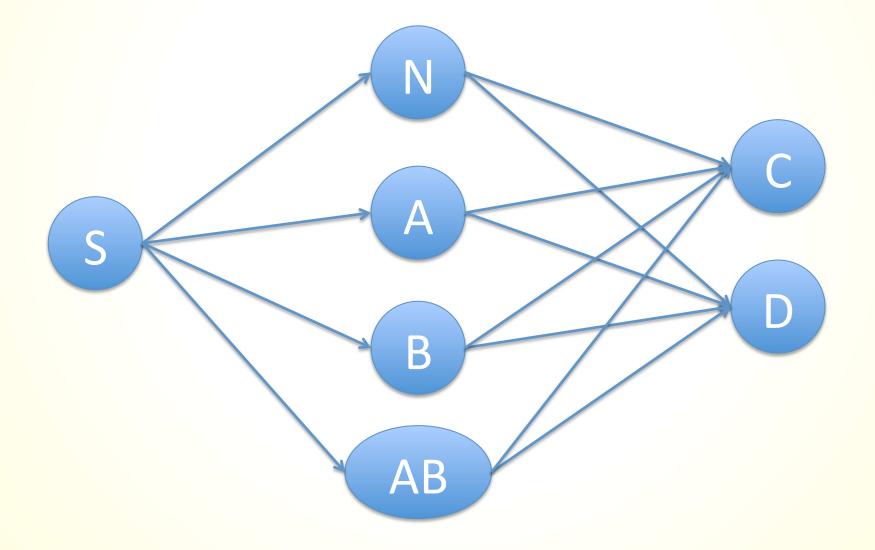


Waismeyer, Meltzoff, & Gopnik, 2014; Goodman, Baker, & Tenenbaum, 2009

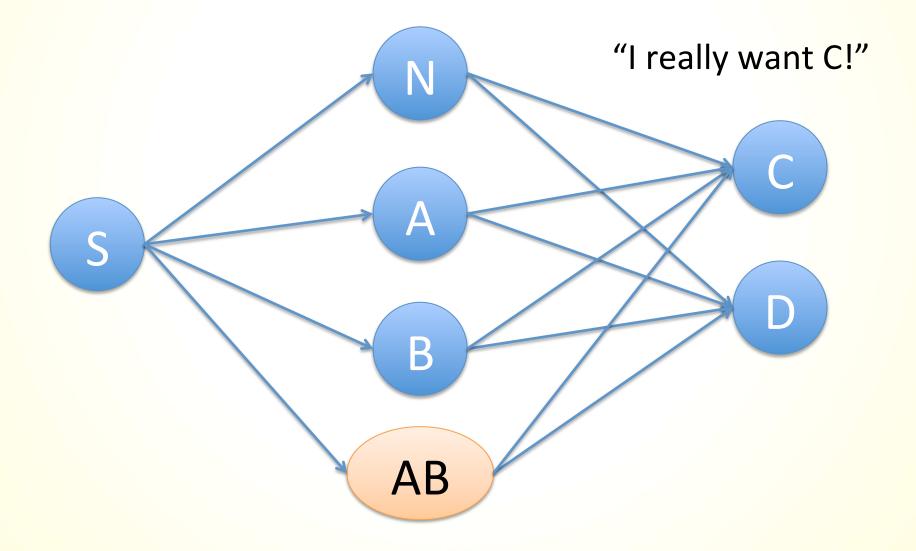
Social causal learning

- Corresponds to a novel problem
- Observe desires r_t and a trajectory resulting from u_t
- Infer P

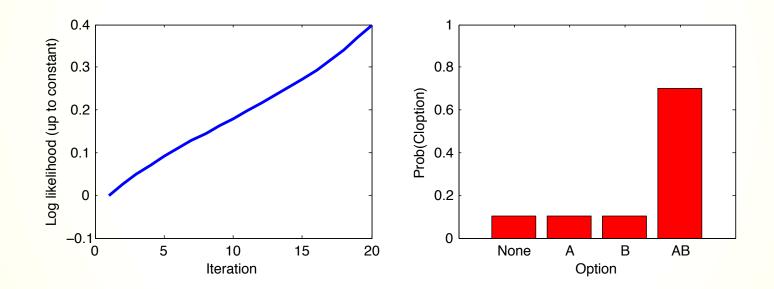
Problem formulation



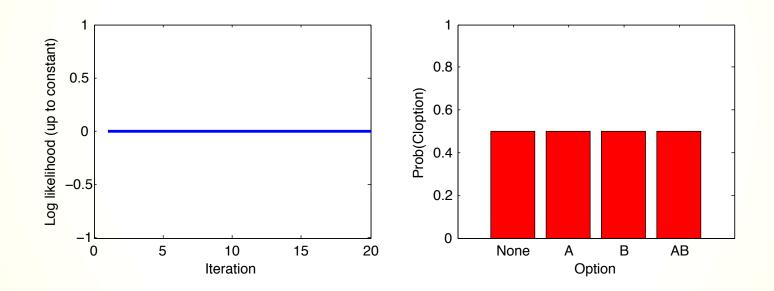
Problem formulation



"I really want C"



"Don't care whether I get C or D"

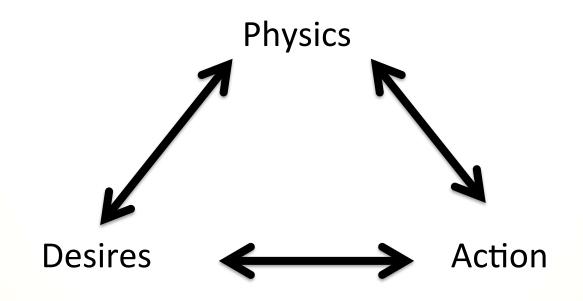


Social causal learning

- Novel learning setting not studied in engineering
- From desires and actions, infer physics/ causal structure

Conclusion

• Intentional action



Conclusion

Get actions from physics and desires

• Get desires from actions and physics

Get physics from actions and desires

Challenges

• Recursive reasoning

• Hierarchy

• Beliefs

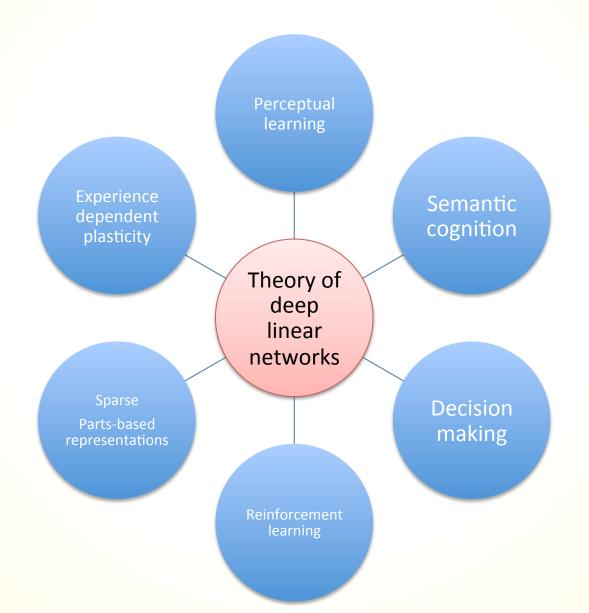
The brain is not a deep linear network

- Simple models help hone intuitions and are an important precursor to treating more complex cases
- What are deep linear networks good for?
 - Learning dynamics
 - Specific consequences of depth
 - Conceptual underpinnings
- What aren't they good for?
 - Understanding increased representational power due to nonlinearities
- Must check behavior in deep nonlinear nets, will not always coincide with linear case

Conclusion

- Learning in a deep, chain-like structure is hard
- Overcoming this challenge may shape how the brain learns in a variety of contexts
- Explains progressive stage-like differentiation in semantic learning
- Spans levels of analysis: single neurons to aspects of semantic cognition

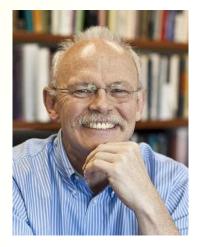
Extensions



Andrew Saxe

155

Thank you!



Jay McClelland

Andrew Ng

Christoph Schreiner

Surya Ganguli

Thank you!

Warm thanks to

- Rachel Lee
- Maneesh Bhand
- Ritvik Mudur
- Bipin Suresh
- Koh Pang Wei
- Zhenghao Chen

- Andrew Maas
- Quoc Le
- Ian Goodfellow
- Chris Baldassano
- Jeremy Glick
- Juan Gao

- Cynthia Henderson
- Daniel Hawthorne
- Dave Jackson
- Bryan Seybold
- Craig Atencio
- Nick Steinmetz
- Logan Grosenick
- Members of McClelland, Ng, Schreiner, & Ganguli labs

Questions?

Warm thanks to

- Rachel Lee
- Maneesh Bhand
- Ritvik Mudur
- Bipin Suresh
- Koh Pang Wei
- Zhenghao Chen

- Andrew Maas
- Quoc Le
- Ian Goodfellow
- Chris Baldassano
- Jeremy Glick
- Juan Gao

- Cynthia Henderson
- Daniel Hawthorne
- Dave Jackson
- Bryan Seybold
- Craig Atencio
- Nick Steinmetz
- Logan Grosenick
- Members of McClelland, Ng, Schreiner, & Ganguli labs

Biological plausibility

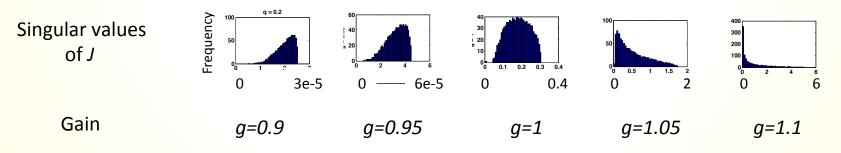
- Gradient descent in the brain?
- Computational level hypothesis $\Delta W = -\lambda \frac{\partial E}{\partial W}$
- Backpropagation: one *algorithm* among many to compute gradient
- Other candidate algorithms:
 - Generalized recirculation algorithm
 - Attention-gated reinforcement learning (AGREL) algorithm

Dynamic Isometry in *nonlinear* nets

Suggests initialization for *nonlinear* nets

- near-isometry on subspace of large dimension
- Singular values of *end-to-end* Jacobian $J_{ij}^{N_l,1}(x^{N_l}) \equiv \frac{\partial x_i^{N_l}}{\partial x_j^1}\Big|_{x^{N_l}}$ concentrated around 1.

Scale orthogonal matrices by gain *g* to counteract contractive nonlinearity



Just beyond *edge of chaos (g>1)* may be good initialization

Andrew Saxe

Dynamic Isometry Initialization

g>1 speeds up 30 layer nonlinear nets

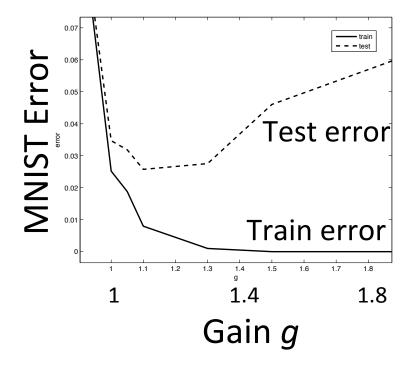
- Tanh network, softmax output, 500 units/layer
- No regularization (weight decay, sparsity, dropout, etc)

MNIST Classification error, epoch 1500	Train Error (%)	Test Error (%)
Glorot (g=1, random)	2.3	3.4
g=1.1, random	1.5	3.0
g=1, orthogonal	2.8	3.5
Dynamic Isometry (g=1.1, orthogonal)	0.095	2.1

Dynamic isometry reduces test error by 1.4% pts

Fast Training from Large Gain Initializations

- Deep networks + large gain factor *g* train exceptionally quickly
- But large *g* incurs heavy cost in generalization performance



- Suggests small initial weights regularize towards smoother functions
- Training difficulty arises from saddle points, not local minima