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Linking learning and plasticity

 Humans and other organisms are incredibly
sophisticated learners

* Across a variety of tasks, we get much better
with practice

* How do changes in synaptic strength across
the brain enable this learning?
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Perceptual Learning

* Practicing orientation discrimination improves
behavioral performance
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The brain

Andrew Saxe

http://phenomena.nationalgeographic.com/files/2013/04/brain-990x622.png



50 billion neurons

http://cdn.medicalxpress.com/newman/gfx/news/2009/neuron.png
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100 trillion synapses

ging connection strengths
ought to.underlie learning
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Depth

* The brain has a layered structure
— Anatomically
— Physiologically

* [will argue this strongly impacts learning
dynamics in the brain
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Depth: Layered anatomy

pital cortex

Inferotemporal =
cortex

http://www.eyebrainpedia.com/En/Localisation/images/EncephaleAiresVisuellesPosterieures.png
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Depth: Layered anatomy

Retina — LGN

Andrew Saxe

pital cortex
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Depth:

V4

V2

Vi

Retina/

LGN
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Layered physiology
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Artificial neurons

Firing rate - <FR> (Hz)
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Deep neural networks
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Deep learning in Al

Many-layered artificial neural

networks 3

Currently state-of-the-art on many
real world datasets
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Nonlinearities resistant to theory

Lee et al., 2009



Object Recognition

* Decisively state of the art in visual object
recognition from images

ImageNet large scale visual recognition challenge, Russakovsky et al., 2014
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Image captioning

Vision Language A grou_p of people
Deep CNN Generating shopplng at an
RNN outdoor market.

—->
S
- @ There are many

vegetables at the
fruit stand.

Google Brain, Vinyals et al., 2014
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Why depth?

Compactly represent complex input-output
functions

Divide and conquer: slowly build up
complexity by composing simple elements

Transform inputs/outputs into suitable
internal representation

High performance on benchmark tasks



Depth complicates learning

* Must choose distribution of changes across
layers

* Introduces
— Coupling
— Symmetries

* Learning often much slower

Andrew Saxe
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The coupling problem
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The coupling problem
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The coupling problem
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Must consider how a change propagates to output

Ahissar & Hochstein, 2004



The symmetry problem
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The symmetry problem

Ahissar & Hochstein, 2004



The symmetry problem

Ahissar & Hochstein, 2004



The symmetry problem

anterior IT \ ’ @
(&2 @
Change V4
f

Complex
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Simple
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Many equivalent changes—must choose one

Ahissar & Hochstein, 2004



Slow learning

Small random initial conditions
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Breakthrough:
Unsupervised layerwise pretraining

Suppose you want to
recognize faces.

First learn a rich hierarchy

of general purpose features
for the visual world.

Andrew Saxe
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Supervised fine tuning

Then learn the actual task
you care about.
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Faster deep learning

Small random initial
conditions

Training error

Epochs

Andrew Saxe

Pretrained initial conditions

Training error

Random ICs:
Pretrained |

Epochs
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Computational hypotheses

 H1: Depth enables compact representation of complex tasks
 H2: Naive deep learning is slow

* H3: Unsupervised layerwise pretraining speeds deep learning
 H4: Unsupervised pretraining improves generalization

* H5: Supervised fine tuning follows gradient direction

 H6: Domain general approach

Andrew Saxe 33



Understanding Depth

 What is the specific impact of depth on
learning dynamics?

Andrew Saxe
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Understanding Depth

 What is the specific impact of depth on
learning dynamics?

 Wanted: Theory that describes size & timing
of changes across layers

Andrew Saxe 35



Outline

* Part 1: Theory of deep linear learning

* Part 2: Applications
— Critical period plasticity
— Perceptual learning
— Semantic cognition
— Perceptual decisions
— Reinforcement learning

Andrew Saxe
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Towards a theory of deep learning dynamics

— What is learned when?
— How does learning speed scale with depth?
— How do different weight initializations impact

learning speed?

Andrew Saxe
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Deep linear neural networks

* Develop theory using a simple model class

 Particularly for brain sciences, crucial to
have a minimal, tractable model

— Conceptual clarity
— Unambiguous predictions
— Isolate contribution of depth

Andrew Saxe
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Deep network

 Little hope for a complete theory with arbitrary
nonlinearities
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Deep linear network

* Use a deep linear network as a starting point.
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Deep linear network

* Input-output map: Always linear
D
y = HW’ x=W"x
i=1

* Isolates impact of depth—Ilittle else going on

Andrew Saxe
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Trivial?

Plateaus and sudden Faster convergence from
transitions pretrained initial conditions
- Random ICs
= S af Pretrained .
o’ o
QD 2. GL) 221
k= oo
c c
.é S .E 1.81
= ©
— 1.6
E p O C h S ! 20 50 100 150 200 250 300 350 400 450 500
Epochs

* Build intuitions for nonlinear case by analyzing linear case
* Will give exact analytic description of these error curves



Gradient descent learning

* Minimize squared error on data {x“,y”} U= 1,...,P.

S (LW )<
=1

u

2

* Gradient descent dynamics: Nonlinear; coupled; nonconvex

P D | T D I—1 T
AW = AZ ( WZ> [y“az“T — (W") a:“a:“T] (W")
p=1 \i=I+1 i=1 e

[=1,--,D

* Useful for studying learning dynamics, not representation power.
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Gradient Descent Learning

* Make small change in weights that most
rapidly improves task performance

* Change each weight in proportion to the
gradient of the error AW = —A%



Resolving symmetries

* Could change IT; Could change V1

anterior IT
N ’ @ Learning general lizes
= ﬂ over orientation,

A <okide Q ’ﬁ location and form
B \ s
1

nr
1

 What would most rapidly improve task performance?

Ahissar & Hochstein, 2004



Error-corrective learning

“Look, a doggie!”

Properties Items
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Error-corrective learning

”
|

“Look, a doggie

Properties Items



Error-corrective learning

“Look, a doggie!”

Guess properties given
current connections

00900 e
000900

Properties Items



Error-corrective learning

Observed properties

“Look, a doggie!”

Properties Items



Error-corrective learning

“Look,
a doggie

III

c0o000e0O
|

Actual = Predicted

~

Error



Error-corrective learning

“Look,
a doggie

III

ceoe0eveoe




- y\Error-corrective learning

<

® “Look,
21: ‘ a goose!”
<




Error-corrective learning

O
.

O

O

ceoe0veoe

“Look,
a horse!”



Error-corrective learning

@

O “Look,
21: é a rabbit!”

@

ceoe0eveoe



Error-corrective learning

“Look,
a doggie!”

ceoeveove

 Each experience changes weights a little
* Many small changes accumulate



From individual episodes to
integrated correlations

Properties Items Items

Can bark +—— J! Move

Gradual
. Bark
Can move «—— learning

Has leaves ¢ — m

Can move «—— J£

Time
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Three layer dynamics
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Problem formulation

« Network trained on patterns {x*,y*},u=1,...,P.

Batch gradient descent on squared error [|Y - W*?w2Lx|[;.

* Dynamics

’C%Wﬂ _ w3t (231 . W32W212”)
’C%W32 _ (231 _ W32W212“) w2t
Input correlations: Y =E[xxT] =1  (seepaperfor

more general

Input-output correlations: y3l — E[yxT] input correlations)
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Fixed points (Baldi & Hornik, 1989)

 All fixed points are global minima or saddle pts
 As t — 00, weights approach

T
W32(t)W21(t) S 231 _ U33S31V11 _ Z SauocvocT
o=1

(Baldi & Hornik, 1989; Sanger, 1989)

* Well-known end point of learning
* But what dynamics occur along the way?
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SVD change of variables
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Analytic learning trajectory

SVD of input-output correlations:

T | 1/Learning rate

s Singular value

N;
T
y31 _ 333ty 1l Z sequ®veT
oa=1

a, | Initial mode strength

Network input-output map:

32 21 - 0 T se?/T
W2(OW=(t) =Y alt,sq,ay)u®v™ where af(t,s,ap) =
(t) (t) O;I (t, 5 oc) ( 0) o251/T _ —I—S/a()

Simulation
Theory

e Starting from balanced,
decoupled initial conditions

e Each mode evolves
independently

Andrew Saxe 0




World

Network

Learning dynamics
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Learning dynamics

Shallow Deep
y h X
O
O
O O
) O

S, | Exact “
Simulated |
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Timescale of learning

» Each mode is learned in time O(1/s)

T

1/Learning rate

S

Singular value

* Singular values of input-output correlations

determine learning speed

Andrew Saxe
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Deeper networks

* Can generalize to arbitrary depth network

* Each effective singular value a evolves
independently according to

d 2_9/(N,—1 T | 1/Learningrate
T—da= (Nl _ l)a /( l )(S — a) s | Singular value
dt N, | # layers

* In deep networks, combined gradientis O(N,/7)

Andrew Saxe 66



Optimal learning rate scaling

* Deep netlearning time depends on optimal
(largest stable) learning rate

* Estimate by taking inverse of maximal eigenvalue
of Hessian over relevant region

* Optimal learning rate scales as O(1/N,)  (v,=#1ayers)

Andrew Saxe

67



Deep linear learning speed

 How does learning speed retard with depth?

* Time difference for deep net vs 3 layer net is

t,—t, = O0(s/a(0))

S

Singular value

a(0)

Initial mode strength

* Very deep linear network can be only a
finite time slower than shallow one!

-For special initial conditions and O(1) initial mode strength

Andrew Saxe
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Deep linear learning speed

 Intuition:

— Gradientnorm O (Nz )
— Learning rate O (1/Nz ) (N, = # layers)
— Learning time O (1)

* Deep learning can be fast with the right ICs.

Andrew Saxe
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MNIST learning speeds

* Trained deep linear nets on MNIST digit classification

* Depths ranging from 3 to 100
1000 hidden units/layer (overcomplete)

* Decoupled initial conditions with fixed initial mode
strength

» Batch gradient descent on squared error
* Optimized learning rates for each depth

e C(Calculated epoch at which error fell below fixed
threshold

Andrew Saxe 70



MNIST learning speeds

Time to criterion Optimal learning rate
x 107"
1.2
o 1
R
g’ 0.8
E 0.6}
g 04
S 0.2
0 ' 0 '
0 50 100 0 50 100
NI (Number of layers) NI (Number of layers)
Depth Depth
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Why is unsupervised pretraining fast?

Erhan etal., 2010

Budget of 10 million iterations

10 T T T T
==-1 layer without pre-training
_|—3 layers without pre-training
| =+-1 layer with RBM pre-training

1074 ——3 layers with RBM pre-training 3
B \ -1 =1 layer with denoising auto-encoder pre-training 1
;C; [ —o-3 layers with denoising auto-encoder pre-training
c :
o .
= 107
(]
2
=
]
%]
iR
o 10 E
(]
=
c
o -4

10

s i 1 i I i i I i
10 0 1 3 4 5 B 7 8 9 10
Number of examples seen x10°

Andrew Saxe

IniNg error

Tra

Deep linear network

238

26

2.4

22

7 Random ICs |
[ Pretrained |

Epochs
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The crucial question:
[nitial mode scaling

* Learning speed ¢, -1, =~ O(s/a(0))

* If a(0) gets smaller with more layers, deep
learning is slow

* If a(0) stays constant with more layers, deep
learning is fast

Andrew Saxe 73



Why are small random weights slow?

a(r)

O b
b, (1) e (1)

<€

O
O

000000
000000

a(t) = b, ()b, (1) - by (1)

[T~/

Effective singular value Layer strengths
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Why are small random weights slow?

* Learningdelay ¢ -1, = O(S/a(O))

0o

+ Initial scaling  a(0) = b,(0)b,(0) - b, (0)~O(c™")

c<l1

* Learning is slow due to very small initial
conditions—stuck on plateau right by saddle pt

* Not due to saturating nonlinearities

Andrew Saxe 75



Deep linear unsupervised
pretraining

* Pretraining with autoencoders is simple

* Each weight matrix comes to be orthogonal

Andrew Saxe
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Why are pretrained weights fast?

* Learningdelay ¢ —t, = O(S / a(()))
* Pretraining initializes all b,(0)=1

e Initial scaling a(0) = bl (O)b2 (0) - le (0)=0Q)

* Learning is fast—have moved away from saddle pt

Andrew Saxe 77



The effect of pretraining

* Direct training time scales exponentially with depth

1
t =0 —
DT (bé\]l)

* Pretraining + fine-tuning time scales linearly with

depth
|
N, log| —
l g(bse))

Andrew Saxe 78
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Depth-independent training time

* Deep linear networks on MNIST
e Glorot: Scaled random initialization (Glorot & Bengio, 2010)

Time to criterion Optimal learning rate
200 pX10”
— Glorot
150 [| — Pretrained 1.5}

| — Orthogonal

a1
o
o
)]

Optimal learning rate
—t

o
o

50 100 50 100
Depth Depth

o
o

Epochs to reach error threshold
—
o
o

* Pretrained and orthogonal have fast depth-independent
training times!
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Revised conceptual picture

* Nonlinearities not the culprit

— Naive deep learning is slow even in the absence of
* local minima
 saturating nonlinearities

* Plateaus near saddle points are the culprit

— Layer strengths close to zero, when multiplied together,
are exponentially closer

Andrew Saxe 80



Cartoon Error Surface

Saddle Point

Saddle Point
Local Optimum

Error

Local Optimum

Global Optimum

Parameter



Cartoon Error Surface

Random initialization

Error

Parameter



Previous Intuition

* Overwhelmingly likely to end in local
minimum

* Unsupervised pretraining combats this by
starting in good basin of attraction

Andrew Saxe
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Cartoon Error Surface

Random initialization

Pretrained initialization

Error

Parameter



Actual Error Surface

Error

Saddle Point Global Optimum

Layer Mode Strength



Actual Error Surface

* No local optima
* All minima are global minima

* (Baldi & Hornik, 1989)
* Gets stuck on plateau near saddle point

* Unsupervised pretraining combats this by
increasing initial scaling

Andrew Saxe 86



Actual Error Surface

Error

Random initialization

_b* 0 b*
Layer Mode Strength



Actual Error Surface

Error

Random initialization Pretrained initialization

_b* 0 b*
Layer Mode Strength



Nonlinear deep networks?

* Theory describes how deep linear networks
behave

* Need to verify behavior in nonlinear nets

Andrew Saxe 89



30 layer tanh networks

* Deep networks + large initializations train exceptionally quickly

* (Can compute gain g necessary to overcome compressive nonlinearities

L 0.06

o

L 0.0

S -

m 0.04 - ,',:I— B

— " Testerror

7 T I NS

Z 0.0

= Train error | (at fixed epoch)
1 1.4 1.8

Gaing

 These improved initializations have played a part in recent SOTA
systems (He et al., 2015; van den Oord et al,, 2015; Le et al,, 2015).
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Few local minima, many saddle points

MNIST
;@30 ~
= &
(- 2 I 1
5% °
T 10 .‘
£ o
IC_E 0’. | |
0.00 0.12 0.25

% of Hessian eigenvectors that

are descent directions

CIFAR10

%60
§ 55
= 50
g 45
— 40!

0.05 0.10 0.15 0.20

% of Hessian eigenvectors that
are descent directions

Dauphin et al., “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization.” Arxiv, 2014
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Qualitatively similar error surface

Deep Linear Network SOTA Conv. Maxout Network

Linear interpolation of convolutional maxout on CIFAR

N Linear interpolation of a deep linear model 25
‘ ‘ ‘ - *—x J(0) train
— J(0) train
8|
201
yan
6
15¢
5 L
S
=
41
10+
3t
2} 5|
1
0 ‘ | | 0 W | |
0.0 0.5 1.0 1.5 2.0 0.0 05 10 15 20
a (o3

Andrew Saxe Goodfellow, Vinyals, & Saxe, 2015 92



Summary of theory

— What is learned when?
* Modes of the SVD learned in time 1/s

— How does learning speed scale with depth?
* Direct training scales exponentially

1
r=0{it]
0

* Layerwise pretraining + fine-tuning scales linearly

1
el
0

Lprorr = O




Outline

* Part 1: Theory of deep linear learning

* Part 2: Applications
— Critical period plasticity
— Perceptual learning
— Semantic cognition
— Perceptual decisions
— Reinforcement learning

Andrew Saxe
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Intentional action

* “Every animal is, in some degree at least, a
perceiver and a behaver.” J] Gibson

* Deep learning models are largely perceptual

e What about action selection?



Deep learning for action selection?

* Key intuitions of deep learning approach
don’t hold in traditional control models

— No compositionality
— No layered, hierarchical structure

— No model that supports distributed
representations of tasks, goals, ...

— Discrete action spaces



Markov decision processes

A Markov decision process is one mathematical formulation of an optimal
control problem. It is defined by four objects (X, U, p(y|z,u),l(x,u))

e X is the state space
e U is the action space
e p(y|x,u) are the transition probabilities

e [(x,u) is the immediate cost for being in state x and choosing action u

Our goal is to choose a policy 7(x) mapping states to actions that
minimizes i

_tf—l

v () = E Z [(Yr, m(yr))




Optimal cost-to-go function

e The optimal cost-to-go function is the expected cumulative cost for
starting at state x and acting optimally thereafter

e It encodes all relevant information about the future

e |n particular, acting greedily with respect to the optimal cost-to-go
function is perfectly optimal

_tf—l
Cost-to-go: V" () = E Z LYz ™ (yr))
7=0

Optimal action: 7 (x) = argmin v (x)
T



Dynamic programming principle

e The dynamic programming principle is a statement about the cost-to-go
function

e |t says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

e This gives the famous Bellman equation

o(w) = min {1z, u) + Byp(.io.0 (1))}



Problems?

* Discrete action space
* No compositionality
* No hierarchy

* Overly flexible cost function

Andrew Saxe 100



Discrete action space

* Typically, at each time step choose one of M
discrete actions

o(x) = min {I(z, 1) + Byp( o) [0(0)]}

Very slow

* Curse of dimensionality

* (all possible joint angles for shoulder) X (all
possible joint angles for elbow) X ...



Discrete action space

* No notion of combining subactions to form a
complete action

o(w) = min {1z, u) + Byp.jo.u) (1))}

* E.g., muscle synergies

 Need distributed, combinatorial
representation of actions



Compositional tasks

* No notion of combining subtasks to
accomplish a new task

o(w) = min {1z, u) + Byp.jo.u) (1))}



Hierarchy

* No notion of hierarchy

o(x) = min {I(z, 1) + Byp( o) [0(0)]}

* Options are hierarchical, but only slightly



Overtlexible cost functions

* Problem formulation might be too general

o(w) = min {1z, u) + Byp.jo.u) (1))}

 We usually take energetically efficient
action



Input

SOTA Example: Atari player

Action A
Action B

8 204 2048 \d

Action F

128 Max

pooling 294 2048

Deep network Value function

Deep network predicts ultimate future reward accrued from taking each
action

10,000,000 examples, 160,000,000 presentations

Works extremely well (often better than human!)

Change any detail of the task (shooting bad guy now worth 2 points not 1),
have to substantially retrain



Wanted:
Composable action selection unit

e The RBM of action selection

“Forms within forms” “Acts within acts”




Wanted:
Composable action selection unit

The RBM of action selection

“Forms within forms” “Acts within acts”

P* (pooling layer)

P* (pooling layer)

FAESRINSFNGE
H* (detection layer) I NONESWES

Lee et al., 2009

V (visible layer)

Graded, non-discrete action
space

Distributed representation of
desires/wants

Blend previously learned
information to do novel tasks
Do action selection, goal
inference, and social causal
learning

Nested acts within acts



Wanted:
Composable action selection unit

The RBM of action selection

“Forms within forms” “Acts within acts”

P (pooling layer)

P* (pooling layer)

FAESRINSFNGE
H* (detection layer) I NONESWES

vusseser  Lee et al., 2009

Graded, non-discrete action
space

Distributed representation
of desires/wants

Blend previously learned
information to do novel
tasks

Do action selection, goal
inference, and social causal
learning

Nested acts within acts



The basic model: Multitask z-learner

 Instantiates three elements

Physics

/N

Desires Cy  ActiOn



The basic model: Multitask z-learner

* Given any two, infer third

Physics

/N

Desires Cy  ActiOn



The basic model: Multitask z-learner

* Reinforcement learning

Physics

Desires =—— Action



The basic model: Multitask z-learner

* Goal inference/inverse reinforcement
learning

Physics

Desires €C— A cHon



The basic model: Multitask z-learner

* Social causal learning

Physics

Desires Action



The basic model: Multitask z-learner

P

>
5 t+1
Physics

¥ u

Desires Action



Physics (causal world structure)

P Is transition matrix

P

St >St+1

One-hot vector One-hot vector



Desires/goals/wants

s

Vector of:
instantaneous rewards expected for reaching each state



Action

U,

Probability distribution over the next state, A 41



Action

U,

Probability distribution over the next state, A |

* Initially may seem odd:
* if you specify transition probabilities directly, just jump to highest
reward state!

* Totally graded notion of actions. Just bias yourself a little more toward
the states you want, and away from those you don’t.



Intentional actions:
Balancing reward seeking with effort

Main innovation (Todorov, 2009):

Achieve your desires Minimize exertion

Intentional action



Intentional actions:
Balancing reward seeking with effort

Main innovation (Todorov, 2009):

Maximize sum of rewards minimize deviation from physics

Intentional action



Intentional actions:
Balancing reward seeking with effort

Main innovation (Todorov, 2009):

Maximize sum of rewards minimize KL(ut | PSt)

Intentional action



Optimal actions

U, = argmaXErtht — KL(u, Il Ps,)

ut 5

Can analytically compute this



For LMDPs, optimal action directly computable from cost-to-go function
v(x). Define exponentiated cost-to-go (desireability)

function: z(z) = exp(—v(z))

Bellman equation linear in z:

z(x) = exp(—q(2))Eyp(|a) [2(y)]

Or ;= MZi + nb where z, encodes desireability of interior
states

Crucial property: Solutions for two different boundary reward

structures linearly compose (Todorov, 2009)
~]+2

~ 1 2
q, =a%+b%z>z = az; + bz,
Multitask Z-learning: Learn about a set of boundary reward structures

* represend,afy hewrtask as a linear combination of these
e optimal z(x) is linear combination of component tasks’ z¢(x)



Compositionality restored!

 Learn about N tasks

* Can weight these N tasks together to
perform infinite variety of composite tasks

* Examples coming...



Boundary states

* Only get compositionality at boundary
states



Outcome revaluation in sequential choice

 Humans and animals can rapidly adapt to changing
rewards in sequential choices (Daw et al., 2011)

(chances of winning money)

stay probability

(b)

Il common

rewarded unrewarded

Model-free

(c)

rewarded unrewarded

“Model-based”

Fig 1, Doll et al., 2012



Multitask Z:
Instant outcome revaluation

Stay probability

Unrewarded

Rewarded

 Behaves like model-based methods but no forward search



Latent learning in spatial navigation

After random exploration of a maze environment, introduction of a
reward at one location leads to instant goal-directed behavior
towards that point (Tolman, 1948)

* Covert multitask z-learning
during exploration enables
immediate navigation to
rewarded locations when
reward structure becomes
known




Tower of Hanoi

Applicable to goal-directed action in more complex domains (Diuk et
al., 2013)

* Move blocks to peg 3; smaller blocks must always be stacked on
larger blocks

* After exploration, multitask
Z-learning is capable of
navigating to arbitrary

configurations State graph with cost-to-go

and optimal trajectory



Can respond flexibly to a
variety of navigation tasks

Exploiting compositionality:
“Navigate to room A or B”

Find food or water
(specific satiety
experiments) I .
Go to a point, while

avoiding door #2
Important note: Not
the same as planning
through arbitrary cost
map because of

boundary state N o
formulation.




“Place medium-size block on middle

))

peg

e

Instantaneous rewards Cost-to-go/trajectory



Exploiting compositionality
Compositionality enables rapid response to novel complex

gueries

» Stack small block on large block
* Place medium block on peg 1, small block on peg 3

* Models highly practiced expert quite familiar with domain
* Can be combined with model-based search



Multitask z-learning
for action selection

* New algorithm with interesting properties:

— Instantaneous optimal adaptation to new terminal state
rewards

— Relies on careful problem formulation to permit
compositionality

— Off-policy algorithm over states (not state/action pairs)
— Compatible with function approximation

 Compatible with model-based & model-free accounts, which are
tractable in the LMDP



Inferring goals/wants/desires

* “Dogs are the sort of agents that like bones”

~Tenenbaum

(a)

Judgment
point:
7

Judgment
point:
11

Experiment 1

(b)

Judgment
point:
7

Judgment
point:
11

Experiment 2

.
ot
.
.
o

Baker, Saxe, & Tenenbaum, 2009




Inferring goals/wants/desires

* Corresponds to inverse reinforcement learning
(Ng & Russell, 2000; Dvijotham & Todorov, 2010)

* Observe P and a trajectory resulting from u,
* Inferr,



Goal A




Goal B







Log likelihood (up to constant)

Inference process

Maximize Log Likelihood of task combination weighting
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Weights

Goal inference

25

0.5

Weights
Weights

L
6

n
8
Judgement point

10

14

16 Judgement point

4

5

Judgement point

6
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Goal inference

* From actions and physics, can infer goals

e Lots left to be done

— Hierarchically structured actions
— Changing goals



Social causal learning

MD Social condition

.m

Likelihood rating
o
53

e
o

B AorB A&B none

Waismeyer, Meltzoff, & Gopnik, 2014; Goodman, Baker, & Tenenbaum, 2009



Social causal learning

* Corresponds to a novel problem

* Observe desires r, and a trajectory resulting from
ut
* Infer P



Problem formulation




Problem formulation

“I really want C!”




“I really want C”

o © < N

o
o o o o
(uondoj9)goid
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o o o G

(1ueysuoo 0} dn) pooyiexi 60
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None
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“Don’t care whether I get C or D”

£
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Q o 047
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Social causal learning

* Novel learning setting not studied in
engineering

* From desires and actions, infer physics/
causal structure



Conclusion

 Intentional action

Physics

/N

Desires Cy  ActiOn



Conclusion

* Getactions from physics and desires
* Get desires from actions and physics

* Get physics from actions and desires



Challenges

* Recursive reasoning
* Hierarchy

e Beliefs



The brain is not a
deep linear network

* Simple models help hone intuitions and are an important
precursor to treating more complex cases

 What are deep linear networks good for?
— Learning dynamics
— Specific consequences of depth
— Conceptual underpinnings

 What aren’t they good for?

— Understanding increased representational power due to
nonlinearities

* Must check behavior in deep nonlinear nets, will not always
coincide with linear case
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Conclusion

Learning in a deep, chain-like structure is hard

Overcoming this challenge may shape how the
brain learns in a variety of contexts

Explains progressive stage-like differentiation
in semantic learning

Spans levels of analysis: single neurons to
aspects of semantic cognition



Andrew Saxe

Extensions

Experience
dependent
plasticity

Sparse

Parts-based
representations

Perceptual
learning

Theory of
deep

linear
networks

Reinforcement
learning

Semantic
cognition

Decision
making

155



Thank you!

Andrew Ng



Thank you!

Warm thanks to

* Rachel Lee * Andrew Maas
 Maneesh Bhand Quoc Le

e Ritvik Mudur lan Goodfellow

* Bipin Suresh Chris Baldassano
* Koh Pang Wei * Jeremy Glick

* Zhenghao Chen * Juan Gao

Cynthia Henderson
Daniel Hawthorne
Dave Jackson
Bryan Seybold
Craig Atencio

Nick Steinmetz
Logan Grosenick

 Members of McClelland, Ng, Schreiner, & Ganguli labs



Questions?

Warm thanks to

« Rachel Lee  Andrew Maas e Cynthia Henderson
« Maneesh Bhand * Quoc Le e Daniel Hawthorne
e Ritvik Mudur * |lan Goodfellow * Dave Jackson

* Bipin Suresh * Chris Baldassano ¢ Bryan Seybold

* Koh Pang Wei * Jeremy Glick  Craig Atencio

« Zhenghao Chen * Juan Gao * Nick Steinmetz

* Logan Grosenick

 Members of McClelland, Ng, Schreiner, & Ganguli labs



Biological plausibility

Gradient descent in the brain?

E
Computational level hypothesis AW = 22

ow

Backpropagation: one algorithm among many
to compute gradient

Other candidate algorithms:
— Generalized recirculation algorithm

— Attention-gated reinforcement learning (AGREL)
algorithm



Dynamic Isometry in nonlinear nets

Suggests initialization for nonlinear nets

* near-isometry on subspace of large dimension

N,
* Singular values of end-to-end Jacobian ! (™) = %ﬂzl
J

N1

concentrated around 1.

Scale orthogonal matrices by gain g to counteract contractive
nonlinearity

Singular values
of J

Frequency

100 =02 60 40 100 400
) 40 %0 300
50 L 2 120 50 200
10
, : 100
% 1 B - 0 2 4 s % o5 1 15 2 % 2 4 6
0 3e-5 0 6e-5 0 2 0 6

o o4
Gain g=0.9 g=0.95 g=1 g=1.05 g=1.1

Just beyond edge of chaos (g>1) may be good initialization
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Dynamic Isometry Initialization

* g>1 speeds up 30 layer nonlinear nets

* Tanh network, softmax output, 500 units/layer
* No regularization (weight decay, sparsity, dropout, etc)

MNIST Classification error, epoch 1500 | Train Test
Error (%) | Error (%)
Glorot (g=1, random) 2.3 3.4
g=1.1, random 1.5 3.0
g=1, orthogonal 2.8 3.5
Dynamic Isometry (g=1.1, orthogonal) | 0.095 2.1

* Dynamic isometry reduces test error by 1.4% pts
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Fast Training from Large Gain
[nitializations

* Deep networks + large gain factor g train exceptionally quickly
* Butlarge g incurs heavy cost in generalization performance

L 0.0

o

L 0.0

S -

i, T N ,

— " Test error]

n " e

Z 0.0

= - Train error|
1 1.4 1.8

Gaing

* Suggests small initial weights regularize towards smoother functions
* Training difficulty arises from saddle points, not local minima

Andrew Saxe 162



