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Linking	
  learning	
  and	
  plasticity	
  

•  Humans	
  and	
  other	
  organisms	
  are	
  incredibly	
  
sophisticated	
  learners	
  

•  Across	
  a	
  variety	
  of	
  tasks,	
  we	
  get	
  much	
  better	
  
with	
  practice	
  

•  How	
  do	
  changes	
  in	
  synaptic	
  strength	
  across	
  
the	
  brain	
  enable	
  this	
  learning?	
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Perceptual	
  Learning	
  

•  Practicing	
  orientation	
  discrimination	
  improves	
  
behavioral	
  performance	
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NEOCORTICAL CIRCUITS 423

Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their

TRENDS in Cognitive Sciences 

Simple

anterior IT

Complex

IT

...

Learning generalizes
over orientation,
location and form

Learning specific
to orientation;
generalizes over
location

Learning specific
to orientation
and location

Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
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These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
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practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.

Opinion TRENDS in Cognitive Sciences Vol.8 No.10 October 2004 459

www.sciencedirect.com

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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  world.	
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Computational	
  hypotheses	
  
•  H1:	
  Depth	
  enables	
  compact	
  representation	
  of	
  complex	
  tasks	
  

•  H2:	
  Naïve	
  deep	
  learning	
  is	
  slow	
  

•  H3:	
  Unsupervised	
  layerwise	
  pretraining	
  speeds	
  deep	
  learning	
  

•  H4:	
  Unsupervised	
  pretraining	
  improves	
  generalization	
  

•  H5:	
  Supervised	
  Iine	
  tuning	
  follows	
  gradient	
  direction	
  

•  H6:	
  Domain	
  general	
  approach	
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Understanding	
  Depth	
  

•  What	
  is	
  the	
  speciIic	
  impact	
  of	
  depth	
  on	
  
learning	
  dynamics?	
  

•  Wanted:	
  Theory	
  that	
  describes	
  size	
  &	
  timing	
  
of	
  changes	
  across	
  layers	
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Outline	
  

•  Part	
  1:	
  Theory	
  of	
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  linear	
  learning	
  

•  Part	
  2:	
  Applications	
  
– Critical	
  period	
  plasticity	
  
– Perceptual	
  learning	
  
– Semantic	
  cognition	
  
– Perceptual	
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– Reinforcement	
  learning	
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Towards	
  a	
  theory	
  of	
  deep	
  learning	
  dynamics	
  

	
  
– What	
  is	
  learned	
  when?	
  

– How	
  does	
  learning	
  speed	
  scale	
  with	
  depth?	
  
	
  
– How	
  do	
  different	
  weight	
  initializations	
  impact	
  
learning	
  speed?	
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Deep	
  linear	
  neural	
  networks	
  

•  Develop	
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  using	
  a	
  simple	
  model	
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  for	
  brain	
  sciences,	
  crucial	
  to	
  
have	
  a	
  minimal,	
  tractable	
  model	
  
– Conceptual	
  clarity	
  
– Unambiguous	
  predictions	
  
–  Isolate	
  contribution	
  of	
  depth	
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Deep	
  network	
  
•  Little	
  hope	
  for	
  a	
  complete	
  theory	
  with	
  arbitrary	
  
nonlinearities	
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Deep	
  linear	
  network	
  
•  Use	
  a	
  deep	
  linear	
  network	
  as	
  a	
  starting	
  point.	
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Deep	
  linear	
  network	
  
•  Input-­‐output	
  map:	
  Always	
  linear	
  

•  Isolates	
  impact	
  of	
  depth—little	
  else	
  going	
  on	
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Trivial?	
  
Plateaus	
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  sudden	
  

transitions	
  
Faster	
  convergence	
  from	
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•  Build	
  intuiBons	
  for	
  nonlinear	
  case	
  by	
  analyzing	
  linear	
  case	
  
•  Will	
  give	
  exact	
  analyBc	
  descripBon	
  of	
  these	
  error	
  curves	
  



Gradient	
  descent	
  learning	
  
•  Minimize	
  squared	
  error	
  on	
  data	
  

•  Gradient	
  descent	
  dynamics:	
  Nonlinear;	
  coupled;	
  nonconvex	
  

•  Useful	
  for	
  studying	
  learning	
  dynamics,	
  not	
  representation	
  power.	
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1 Introduction

Deep learning approaches have realized remarkable performance across a range of application areas
in machine learning, from computer vision [1, 2] to speech recognition [3] and natural language
processing [4], but the complexity of deep nonlinear networks has made it difficult to develop a
comprehensive theoretical understanding of deep learning. For example, the necessary conditions
for convergence, the speed of convergence, and optimal methods for initialization are based pri-
marily on empirical results without much theoretical support. As a first step in understanding the
learning dynamics of deep nonlinear networks, we can analyze deep linear networks which compute
y = W

D

W

D�1 · · ·W 2
W

1
x, where x, y are input and output vectors respectively, and the W

i are
D weight matrices in this D + 1 layer deep network. Although these networks are no more expres-
sive than a single linear map y = Wx (and therefore unlikely to yield high accuracy in practice),
we have previously shown [5] that they do exhibit nonlinear learning dynamics similar to those ob-
served in nonlinear networks. By precisely characterizing how the weight matrices evolve in linear
networks, we may gain insight into the properties of nonlinear networks with simple nonlinearities
(such as rectified linear units).

In this progress report, we show preliminary results for continuous batch gradient descent, in which
the gradient step size is assumed to be small enough to take a continuous time limit. By the end of
the project, we hope to obtain similar results for discrete batch gradient descent (with a discrete step
size) and stochastic (online) gradient descent.

2 Preliminaries and Previous Work

A deep linear network maps input vectors x to output vectors y =

⇣Q
D

i=1 W
i

⌘
x ⌘ Wx. We wish

to minimize the squared error on the training set {xµ

, y

µ}P
µ=1, l(W ) =

P
P

µ=1 kyµ �Wx

µk2.

The batch gradient descent update for a layer l is

�W

l

= �

PX

µ=1

 
DY

i=l+1

W

i

!
T

"
y

µ

x

µT �
 

DY

i=1

W

i

!
x

µ

x

µT

# 
l�1Y

i=1

W

i

!
T

, (1)

where
Q

b

i=a

W

i

= W

b

W

(b�1) · · ·W (a�1)
W

a with the caveat that
Q

b

i=a

W

i

= I if a > b.

The minimizing W can be found analytically, by setting the derivative of the loss to zero:
PX

µ=1

(y

µ �Wx

µ

)x

µT

= 0 (2)

Let ⌃xx ⌘
P

P

µ=1 x
µ

x

µT be the input correlation matrix, and ⌃

yx ⌘
P

P

µ=1 y
µ

x

µT be the input-
output correlation matrix. The optimal W is

W

⇤
= ⌃

yx

(⌃

xx

)

�1 (3)

1

l =1,,D
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)



Gradient	
  Descent	
  Learning	
  

•  Make	
  small	
  change	
  in	
  weights	
  that	
  most	
  
rapidly	
  improves	
  task	
  performance	
  

•  Change	
  each	
  weight	
  in	
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Resolving	
  symmetries	
  
•  Could	
  change	
  IT;	
  Could	
  change	
  V1	
  

•  What	
  would	
  most	
  rapidly	
  improve	
  task	
  performance?	
  
Ahissar	
  &	
  Hochstein,	
  2004	
  

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Simple

anterior IT
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IT
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Learning generalizes
over orientation,
location and form

Learning specific
to orientation;
generalizes over
location

Learning specific
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and location

Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
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or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.

Opinion TRENDS in Cognitive Sciences Vol.8 No.10 October 2004 459

www.sciencedirect.com

V1	
  

V4	
  

IT	
  



Error-­‐corrective	
  learning	
  

Properties
 Items


“Look,	
  a	
  doggie!”	
  



Error-­‐corrective	
  learning	
  

Properties
 Items


“Look,	
  a	
  doggie!”	
  

Dog	
  



Error-­‐corrective	
  learning	
  

Properties
 Items


Dog	
  

“Look,	
  a	
  doggie!”	
  



Error-­‐corrective	
  learning	
  

Properties
 Items


Dog	
  Guess	
  properBes	
  given	
  	
  
current	
  connecBons	
  

“Look,	
  a	
  doggie!”	
  



Error-­‐corrective	
  learning	
  

Properties
 Items


Dog	
  

Observed	
  properBes	
  

“Look,	
  a	
  doggie!”	
  



Error-­‐corrective	
  learning	
  

Dog	
   “Look,	
  	
  
a	
  doggie!”	
  -­‐	
  

Error	
  

Actual	
  	
  -­‐	
  	
  Predicted	
  



Error-­‐corrective	
  learning	
  

Dog	
   “Look,	
  	
  
a	
  doggie!”	
  W 32 W 21



Error-­‐corrective	
  learning	
  

“Look,	
  	
  
a	
  goose!”	
  W 32 W 21



Error-­‐corrective	
  learning	
  

“Look,	
  	
  
a	
  horse!”	
  W 32 W 21



Error-­‐corrective	
  learning	
  

“Look,	
  	
  
a	
  rabbit!”	
  W 32 W 21



Error-­‐corrective	
  learning	
  

Dog	
   “Look,	
  	
  
a	
  doggie!”	
  W 32 W 21

•  Each	
  experience	
  changes	
  weights	
  a	
  li>le	
  
•  Many	
  small	
  changes	
  accumulate	
  



From	
  individual	
  episodes	
  to	
  
integrated	
  correlations	
  

Andrew	
  Saxe	
   57	
  

…


Can move


Can bark


Has leaves


…
	
  

Can move


Ti
m

e


Items	
  Proper:es	
   Items	
  

≈


Gradual

learning
 Bark


Move


Σ31
…
	
  

1


-1


0




Three	
  layer	
  dynamics	
  

	
  

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Andrew	
  Saxe	
   58	
  



Problem	
  formulation	
  
•  Network	
  trained	
  on	
  patterns	
  
	
  

•  Batch	
  gradient	
  descent	
  on	
  squared	
  error	
  
	
  

•  Dynamics	
  

Items 

Pr
op

er
tie

s 

Items 

Σ31

=

U S VT

Modes 

M
od

es
 

+ 

0 

- 

C S O R 1 2 3 

3 
2 

1 

P 
B 

S 
F 

M
 

C S O R 
Modes 

1 2 3 

Input-output  
correlation matrix 

Output  
singular vectors Singular values Input  

singular vectors 

M
od

es
 

=

Pr
op

er
tie

s 
P 

B 
S 

F 
M

 

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Input	
  correlaBons:	
  
Input-­‐output	
  correlaBons:	
  

and the network’s feature output. This gradient descent procedure yields the learning rule

�W 21 = �W 32T
�
yµxµT �W 32W 21xµxµT

�
(1)

�W 32 = �
�
yµxµT �W 32W 21xµxµT

�
W 21T , (2)

for each example µ, where � is a small learning rate. We imagine that training is divided into a
sequence of learning epochs, and in each epoch, the above rules are followed for all P examples in
random order. As long as � is su�ciently small so that the weights change by only a small amount
per learning epoch, we can average (1)-(2) over all P examples and take a continuous time limit to
obtain the mean change in weights per learning epoch. Let X = [x1x2 · · ·xP ] be a matrix consisting
of all input examples, and Y = [y1y2 · · · yP ] be a matrix consisting of the corresponding output
vectors. Over the course of an epoch, the averaged system performs gradient descent on the sum
of the squared error (SSE) of all patterns, defined as

SSE(W 21,W 32) =
��Y �W 32W 21X

��2
F

(3)

where kAkF =
qP

i,j A
2
ij is the Frobenius norm of a matrix. Gradient descent on the SSE is

controlled purely by the second order statistics of the training set, and gives rise to the di↵erential
equations

⌧
d

dt
W 21 = W 32T

�
⌃31 �W 32W 21⌃11

�
(4)

⌧
d

dt
W 32 =

�
⌃31 �W 32W 21⌃11

�
W 21T , (5)

where
⌃11 ⌘ XXT (6)

is an N1 ⇥N1 input correlation matrix,

⌃31 ⌘ Y XT (7)

is an N3 ⇥N1 input-output correlation matrix, and

⌧ ⌘ P

�
. (8)

Here t measures time in units of learning epochs; as t varies from 0 to 1, the network has seen P
examples corresponding to one learning epoch. We note that, although the network we analyze is
completely linear with the simple input-output map y = W 32W 21x, the gradient descent learning
dynamics given in Eqns. (4)-(5) are nonlinear.

1.1 Learning dynamics with orthogonal inputs

Our fundamental goal is to understand the dynamics of learning in (4)-(5) as a function of the
input statistics ⌃11 and ⌃31. In general, the outcome of learning will reflect an interplay between
the perceptual correlations in the examples, described by ⌃11, and the input-output correlations
described by ⌃31. To begin, though, we further simplify the analysis by focusing on the case
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first
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•  How	
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  speed	
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•  Very	
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  linear	
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  only	
  a	
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  right	
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•  Trained	
  deep	
  linear	
  nets	
  on	
  MNIST	
  digit	
  classiIication	
  

•  Depths	
  ranging	
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  to	
  100	
  
•  1000	
  hidden	
  units/layer	
  (overcomplete)	
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  initial	
  conditions	
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  Iixed	
  initial	
  mode	
  
strength	
  

•  Batch	
  gradient	
  descent	
  on	
  squared	
  error	
  
•  Optimized	
  learning	
  rates	
  for	
  each	
  depth	
  

•  Calculated	
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  which	
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early examples is important even in a large-scale setting,
we propose to study the online learning case, where the
number of training examples is very large (potentially in-
finite). In a standard interpretation of a canonical (L

1

/L
2

regularizer), its effect diminishes in such a setting. This
is because the prior defined by it should be in principle be
overcome by the likelihood from the ever-increasing data.

In this paper we discuss the surprising result that the ef-
fect of pre-training is maintained as the size of the dataset
grows. We shall argue that the interplay between the non-
convexity of the training objective and the clever unsuper-
vised initialization technique is the reason for this.

6.1 InfiniteMNIST

The next set of results point in this direction and is the
most surprising finding of this paper. Figure 3 shows the
online classification error (on the next block of examples)
for 6 architectures trained on InfiniteMNIST: 1 and 3-
layer DBNs, 1 and 3-layer SDAE, as well as 1 and 3-layer
networks without pre-training. Note that stochastic gradi-
ent descent in online learning is a stochastic gradient de-
scent optimization of the generalization error, so good on-
line error in principle means that we are optimizing well the
training criterion. We can draw several observations from
these results. First, 3-layer networks without pre-training
are worse at generalization, compared to the 1-layer equiv-
alent. It seems that even in an online setting, with very
large amounts of data, optimizing deep networks is harder
than shallow ones. Second, 3-layer SDAE models seem
to generalize better than 3-layer DBNs. Finally and most
surprisingly, the pre-training advantage does not vanish as
the number of training examples increases, on the contrary.
These results seem to support an optimization effect expla-
nation for pre-training.

Figure 3: Comparison between 1 and 3-layer networks trained on
InfiniteMNIST. 3-layer models have 800-1200 units/layer, 1-
layer models have 2500 units in the hidden layer.

Note that the number of hidden units of each model is a
hyperparameter. So theoretical results, such as the Univer-
sal Approximation Theorem, suggest that 1-layer networks
without pre-training should in principle be able to repre-
sent the input distribution as capacity and data grow, as is
the case in this experiment2. Instead, without pre-training,
it seems that the networks are not able to take advantage of
the additional capacity, which again points towards an opti-
mization explanation. It is clear, however, that the starting
point of the non-convex optimization matters, even for
networks that are seemingly “easier” to optimize (1-layer
ones), which supports our hypothesis and favors a regular-
ization interpretation.

6.2 The Influence of Early Examples

In the case of InfiniteMNIST we operate in an online
stochastic optimization regime, where we try to find a local
minimum of a highly non-convex objective function. It is
then interesting to study to what extent the outcome of this
optimization is influenced by the examples seen at different
points during training, and whether the early examples have
a stronger influence (which would not be the case in the
convex case).

To quantify the variance of the outcome and to compare
these variances for models with and without pre-training,
we proceeded with the following experiment: given a
dataset with 10 million examples, we vary the first million
examples (across 10 different random draws, sampling a
different set of 1 million examples each time) and keep the
other ones fixed. After training the (10) models, we mea-
sure the variance of the output of the networks on a fixed
test set (i.e. we measure the variance in function space).
We then vary the next million examples in the same fash-
ion, and so on, to see how much each of the ten parts of the
training set influenced the final function.

Figure 4 shows the outcome of such an analysis. The sam-
ples at the beginning3 do seem to influence the output of the
networks more than the ones at the end. However, this vari-
ance is lower for the networks that have been pre-trained.
In addition to that, one should note that the variance of the
pre-trained network at 0.25 (i.e. the variance of the output
as a function of the first samples used for supervised train-
ing) is significantly lower than the variance of the super-
vised network. Such results imply that unsupervised pre-
training can be seen as a sort of variance reduction tech-
nique, consistent with a regularization role. Finally, both
networks have higher output variances as a function of the
last examples used for optimization.

2In a limited sense, of course, since we are obviously not able
to explore unbounded layer sizes and datasets.

3Which are unsupervised examples, for the red curve.
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The	
  crucial	
  question:	
  	
  
Initial	
  mode	
  scaling	
  

•  Learning	
  speed	
  

•  If	
  a(0)	
  gets	
  smaller	
  with	
  more	
  layers,	
  deep	
  
learning	
  is	
  slow	
  

•  If	
  a(0)	
  stays	
  constant	
  with	
  more	
  layers,	
  deep	
  
learning	
  is	
  fast	
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Why	
  are	
  small	
  random	
  weights	
  slow?	
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a(t) = b1(t)b2 (t) bNl (t)…	
  	
  

EffecBve	
  singular	
  value	
   Layer	
  strengths	
  

b1(t)b2 (t)

a(t)



Why	
  are	
  small	
  random	
  weights	
  slow?	
  

•  Learning	
  delay	
  

•  Initial	
  scaling	
  

•  Learning	
  is	
  slow	
  due	
  to	
  very	
  small	
  initial	
  
conditions—stuck	
  on	
  plateau	
  right	
  by	
  saddle	
  pt	
  

•  Not	
  due	
  to	
  saturating	
  nonlinearities	
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a(0) = b1(0)b2 (0) bNl (0) ≈O(c
Nl )…	
  	
  

t∞ − t3 ≈O s / a(0)( )

c <1



Deep	
  linear	
  unsupervised	
  
pretraining	
  

•  Pretraining	
  with	
  autoencoders	
  is	
  simple	
  

•  Each	
  weight	
  matrix	
  comes	
  to	
  be	
  orthogonal	
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Why	
  are	
  pretrained	
  weights	
  fast?	
  

•  Learning	
  delay	
  

•  Pretraining	
  initializes	
  all	
  bi(0)=1	
  

•  Initial	
  scaling	
  

•  Learning	
  is	
  fast—have	
  moved	
  away	
  from	
  saddle	
  pt	
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a(0) = b1(0)b2 (0) bNl (0) ≈O(1)…	
  	
  

t∞ − t3 ≈O s / a(0)( )



The	
  effect	
  of	
  pretraining	
  

•  Direct	
  training	
  time	
  scales	
  exponentially	
  with	
  depth	
  

•  Pretraining	
  +	
  Iine-­‐tuning	
  time	
  scales	
  linearly	
  with	
  
depth	
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Depth-­‐independent	
  training	
  time	
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Time	
  to	
  criterion	
   Op:mal	
  learning	
  rate	
  

•  Deep	
  linear	
  networks	
  on	
  MNIST	
  
•  Glorot:	
  Scaled	
  random	
  iniBalizaBon	
  (Glorot	
  &	
  Bengio,	
  2010)	
  

•  Pretrained	
  and	
  orthogonal	
  have	
  fast	
  depth-­‐independent	
  
training	
  Bmes!	
  



Revised	
  conceptual	
  picture	
  
•  Nonlinearities	
  not	
  the	
  culprit	
  

–  Naïve	
  deep	
  learning	
  is	
  slow	
  even	
  in	
  the	
  absence	
  of	
  	
  
•  local	
  minima	
  
•  saturating	
  nonlinearities	
  

•  Plateaus	
  near	
  saddle	
  points	
  are	
  the	
  culprit	
  

–  Layer	
  strengths	
  close	
  to	
  zero,	
  when	
  multiplied	
  together,	
  
are	
  exponentially	
  closer	
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Cartoon	
  Error	
  Surface	
  

Error	
  

Global	
  OpBmum	
  

Local	
  OpBmum	
  
Saddle	
  Point	
  

Parameter	
  

Saddle	
  Point	
  

Local	
  OpBmum	
  



Cartoon	
  Error	
  Surface	
  

Error	
  

Parameter	
  

Random	
  iniBalizaBon	
  



Previous	
  Intuition	
  

•  Overwhelmingly	
  likely	
  to	
  end	
  in	
  local	
  
minimum	
  

•  Unsupervised	
  pretraining	
  combats	
  this	
  by	
  
starting	
  in	
  good	
  basin	
  of	
  attraction	
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Cartoon	
  Error	
  Surface	
  

Error	
  

Parameter	
  

Random	
  iniBalizaBon	
  

Pretrained	
  iniBalizaBon	
  



Actual	
  Error	
  Surface	
  

Error	
  

0	
  

Global	
  OpBmum	
  Global	
  OpBmum	
  

b*	
  -­‐b*	
  

Saddle	
  Point	
  

Layer	
  Mode	
  Strength	
  



Actual	
  Error	
  Surface	
  

•  No	
  local	
  optima	
  
•  All	
  minima	
  are	
  global	
  minima	
  
•  (Baldi	
  &	
  Hornik,	
  1989)	
  

•  Gets	
  stuck	
  on	
  plateau	
  near	
  saddle	
  point	
  

•  Unsupervised	
  pretraining	
  combats	
  this	
  by	
  
increasing	
  initial	
  scaling	
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Actual	
  Error	
  Surface	
  

Error	
  

0	
   b*	
  -­‐b*	
  
Layer	
  Mode	
  Strength	
  

Random	
  iniBalizaBon	
  



Actual	
  Error	
  Surface	
  

Error	
  

0	
   b*	
  -­‐b*	
  
Layer	
  Mode	
  Strength	
  

Random	
  iniBalizaBon	
   Pretrained	
  iniBalizaBon	
  



Nonlinear	
  deep	
  networks?	
  

•  Theory	
  describes	
  how	
  deep	
  linear	
  networks	
  
behave	
  

•  Need	
  to	
  verify	
  behavior	
  in	
  nonlinear	
  nets	
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30	
  layer	
  tanh	
  networks	
  
•  Deep	
  networks	
  +	
  large	
  initializations	
  train	
  exceptionally	
  quickly	
  	
  
•  Can	
  compute	
  gain	
  g	
  necessary	
  to	
  overcome	
  compressive	
  nonlinearities	
  

	
  
•  These	
  improved	
  initializations	
  have	
  played	
  a	
  part	
  in	
  recent	
  SOTA	
  
systems	
  (He	
  et	
  al.,	
  2015;	
  van	
  den	
  Oord	
  et	
  al.,	
  2015;	
  Le	
  et	
  al.,	
  2015).	
  	
  

Andrew	
  Saxe	
   90	
  

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

g

er
ro

r

 

 

train
test

Student Version of MATLAB

M
N
IS
T	
  
Er
ro
r	
  

Gain	
  g	
  

Test	
  error	
  

Train	
  error	
  	
  (at	
  fixed	
  epoch)	
  

1	
   1.4	
   1.8	
  



Few	
  local	
  minima,	
  many	
  saddle	
  points	
  

Dauphin	
  et	
  al.,	
  “Identifying	
  and	
  attacking	
  the	
  saddle	
  point	
  problem	
  
in	
  high-­‐dimensional	
  non-­‐convex	
  optimization.”	
  Arxiv,	
  2014	
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Figure 1: (a) and (c) show how critical points are distributed in the ✏–↵ plane. Note that they
concentrate along a monotonically increasing curve. (b) and (d) plot the distributions of eigenvalues
of the Hessian at three different critical points. Note that the y axes are in logarithmic scale. The
vertical lines in (b) and (d) depict the position of 0.

of the student’s hidden units to mimic the teacher’s hidden units. Interestingly, this exit from the
plateau is achieved by following directions of negative curvature associated with a saddle point.

Mizutani and Dreyfus (2010) look at the effect of negative curvature on learning and implicitly at
the effect of saddle points in the error surface. Their findings are similar. They show that the error
surface of a single layer MLP has saddle points where the Hessian matrix is indefinite.

3 Experimental validation of the prevalence of saddle points

In this section, we experimentally test whether the theoretical predictions presented by Bray and
Dean (2007) for random Gaussian fields hold for neural networks. To our knowledge, this is the
first attempt to measure the relevant statistical properties of neural network error surfaces and to
test if the theory developed for random Gaussian fields generalizes to such cases.

In particular, we are interested in how the critical points of a single layer MLP are distributed in the
✏–↵ plane, and how the eigenvalues of the Hessian matrix at these critical points are distributed. We
used a small MLP trained on a down-sampled version of MNIST and CIFAR-10. Newton method
was used to identify critical points of the error function. The results are in Fig. 1. More details
about the setup are provided in the supplementary material.

This empirical test confirms that the observations by Bray and Dean (2007) qualitatively hold for
neural networks. Critical points concentrate along a monotonically increasing curve in the ✏–↵
plane. Thus the prevalence of high error saddle points do indeed pose a severe problem for training
neural networks. While the eigenvalues do not seem to be exactly distributed according to the
semicircular law, their distribution does shift to the left as the error increases. The large mode at 0
indicates that there is a plateau around any critical point of the error function of a neural network.

4 Dynamics of optimization algorithms near saddle points

Given the prevalence of saddle points, it is important to understand how various optimization
algorithms behave near them. Let us focus on non-degenerate saddle points for which the Hessian
is not singular. These critical points can be locally analyzed by re-parameterizing the function
according to Morse’s lemma below (see chapter 7.3, Theorem 7.16 in Callahan (2010) or the
supplementary material for details):

f(✓⇤ + �✓) = f(✓⇤) +
1
2

n✓X

i=1

�i�v2
i , (1)

where �i represents the ith eigenvalue of the Hessian, and �vi are the new parameters of the model
corresponding to motion along the eigenvectors ei of the Hessian of f at ✓⇤.

A step of the gradient descent method always points in the right direction close to a saddle point
(SGD in Fig. 2). If an eigenvalue �i is positive (negative), then the step moves toward (away) from
✓⇤ along �vi because the restriction of f to the corresponding eigenvector direction �vi, achieves
a minimum (maximum) at ✓⇤. The drawback of the gradient descent method is not the direction, but
the size of the step along each eigenvector. The step, along any direction ei, is given by ��i�vi,
and so small steps are taken in directions corresponding to eigenvalues of small absolute value.
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Figure 1: (a) and (c) show how critical points are distributed in the ✏–↵ plane. Note that they
concentrate along a monotonically increasing curve. (b) and (d) plot the distributions of eigenvalues
of the Hessian at three different critical points. Note that the y axes are in logarithmic scale. The
vertical lines in (b) and (d) depict the position of 0.

of the student’s hidden units to mimic the teacher’s hidden units. Interestingly, this exit from the
plateau is achieved by following directions of negative curvature associated with a saddle point.

Mizutani and Dreyfus (2010) look at the effect of negative curvature on learning and implicitly at
the effect of saddle points in the error surface. Their findings are similar. They show that the error
surface of a single layer MLP has saddle points where the Hessian matrix is indefinite.

3 Experimental validation of the prevalence of saddle points

In this section, we experimentally test whether the theoretical predictions presented by Bray and
Dean (2007) for random Gaussian fields hold for neural networks. To our knowledge, this is the
first attempt to measure the relevant statistical properties of neural network error surfaces and to
test if the theory developed for random Gaussian fields generalizes to such cases.

In particular, we are interested in how the critical points of a single layer MLP are distributed in the
✏–↵ plane, and how the eigenvalues of the Hessian matrix at these critical points are distributed. We
used a small MLP trained on a down-sampled version of MNIST and CIFAR-10. Newton method
was used to identify critical points of the error function. The results are in Fig. 1. More details
about the setup are provided in the supplementary material.

This empirical test confirms that the observations by Bray and Dean (2007) qualitatively hold for
neural networks. Critical points concentrate along a monotonically increasing curve in the ✏–↵
plane. Thus the prevalence of high error saddle points do indeed pose a severe problem for training
neural networks. While the eigenvalues do not seem to be exactly distributed according to the
semicircular law, their distribution does shift to the left as the error increases. The large mode at 0
indicates that there is a plateau around any critical point of the error function of a neural network.

4 Dynamics of optimization algorithms near saddle points

Given the prevalence of saddle points, it is important to understand how various optimization
algorithms behave near them. Let us focus on non-degenerate saddle points for which the Hessian
is not singular. These critical points can be locally analyzed by re-parameterizing the function
according to Morse’s lemma below (see chapter 7.3, Theorem 7.16 in Callahan (2010) or the
supplementary material for details):

f(✓⇤ + �✓) = f(✓⇤) +
1
2

n✓X

i=1

�i�v2
i , (1)

where �i represents the ith eigenvalue of the Hessian, and �vi are the new parameters of the model
corresponding to motion along the eigenvectors ei of the Hessian of f at ✓⇤.

A step of the gradient descent method always points in the right direction close to a saddle point
(SGD in Fig. 2). If an eigenvalue �i is positive (negative), then the step moves toward (away) from
✓⇤ along �vi because the restriction of f to the corresponding eigenvector direction �vi, achieves
a minimum (maximum) at ✓⇤. The drawback of the gradient descent method is not the direction, but
the size of the step along each eigenvector. The step, along any direction ei, is given by ��i�vi,
and so small steps are taken in directions corresponding to eigenvalues of small absolute value.
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Qualitatively	
  similar	
  error	
  surface	
  

Deep	
  Linear	
  Network	
  

Under review as a conference paper at ICLR 2015

Figure 9: Linear interpolation from a small random initialization point to a solution for a linear
regression model of depth 2. This shows the same qualitative features as our linear interpolation
experiments for neural networks: a flattening of the objective function near the saddle point at the
origin, and only one minimum within this 1-D subspace.

Figure 10: Left) Interpolation between two solutions to deep linear regression. Though these two
solutions lie on connected manifold of globally minimal values, the straight line between them en-
counters a barrier of higher cost. The curve for the low dimensional linear model has all the same
qualitative characteristics as the curve for the high dimensional non-linear networks we studied.
Right) Interpolation between a random point with large norm and an solution to deep linear regres-
sion. As with the neural network, this search does not encounter any minima other than the solution
used to initialize the search.

Specifically, we show that the problem of training y = w1w2x to output 1 when x = 1 using mean
squared error is sufficient to produce all of the qualitative features of neural network training that
our linear interpolation experiments have exposed. See Fig. 9 and Fig. 10.

6 DISCUSSION

The reason for the success of SGD on a wide variety of tasks is now clear: these tasks are relatively
easy to optimize. The primary difficulty is finding the correct search direction. While this task is still
difficult, it is not nearly as difficult as escaping sequences of local minima or threading a winding,
high-dimensional ravine.

This work has only considered neural networks that perform very well. It is possible that these neural
networks perform well because extensive hyperparameter search has found problems that SGD is
able to optimize easily, but that other hyperparameters correspond to optimization problems that are
too hard. In particular, it seems likely that very large neural networks are easier to fit to a particular
task.

Future work should aim to characterize the set of problems that are easy for SGD. Perhaps more
advanced optimization algorithms could allow the training of smaller models.

7

SOTA	
  Conv.	
  Maxout	
  Network	
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Under review as a conference paper at ICLR 2015

Figure 5: Here we use linear interpolation to search for local minima. Left) By interpolating between
two different SGD solutions, we show that each solution is a different local minimum within this
1-D subspace. Right) If we interpolate between a random point in space and an SGD solution, we
find no local minima besides the SGD solution, suggesting that local minima are rare.

Figure 6: The linear interpolation experiment for a convolutional maxout network on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Left) At a global scale, the curve looks very well-behaved.
Right) Zoomed in near the initial point, we see there is a shallow barrier that SGD must navigate.

There are of course multiple minima in neural network optimization problems, and the shortest path
between two minima can contain a barrier of higher cost. We can find two different solutions by us-
ing different random seeds for the random number generators used to initialize the weights, generate
dropout masks, and select examples for SGD minibatches. (It is possible that these solutions are not
minima but saddle points that SGD failed to escape) We do not find any local minima within this
subspace other than solution points, and these different solutions appear to correspond to different
choices of how to break the symmetry of the saddle point at the origin, rather than to fundamentally
different solutions of varying quality. See Fig. 5.

4 ADVANCED NETWORKS

Having performed experiments to understand the behavior of neural network optimization on su-
pervised feedforward networks, we now verify that the same behavior occurs for more advanced
networks.

In the case of convolutional networks, we find that there is a single barrier in the objective function,
near where the network is initialized. This may simply correspond to the network being initialized
with too large of random weights. This barrier is reasonably wide but not very tall. See Fig. 6 for
details.

To examine the behavior of SGD on generative models, we experimented with an MP-DBM (Good-
fellow et al., 2013a). This model is useful for our purposes because it gets good performance as
a generative model and as a classifier, and its objective function is easy to evaluate (no MCMC
business). Here we find a secondary local minimum with high error, but a visualization of the SGD
trajectory reveals that SGD passed far enough around the anomaly to avoid having it affect learn-

5

Goodfellow,	
  Vinyals,	
  &	
  Saxe,	
  2015	
  



Summary	
  of	
  theory	
  

–  	
  What	
  is	
  learned	
  when?	
  
•  Modes	
  of	
  the	
  SVD	
  learned	
  in	
  time	
  1/s	
  

– How	
  does	
  learning	
  speed	
  scale	
  with	
  depth?	
  
•  Direct	
  training	
  scales	
  exponentially	
  

•  Layerwise	
  pretraining	
  +	
  Iine-­‐tuning	
  scales	
  linearly	
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Outline	
  

•  Part	
  1:	
  Theory	
  of	
  deep	
  linear	
  learning	
  

•  Part	
  2:	
  Applications	
  	
  
– Critical	
  period	
  plasticity	
  
– Perceptual	
  learning	
  
– Semantic	
  cognition	
  
– Perceptual	
  decisions	
  
– Reinforcement	
  learning	
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Intentional	
  action	
  

•  “Every	
  animal	
  is,	
  in	
  some	
  degree	
  at	
  least,	
  a	
  
perceiver	
  and	
  a	
  behaver.”	
  JJ	
  Gibson	
  

•  Deep	
  learning	
  models	
  are	
  largely	
  perceptual	
  

•  What	
  about	
  action	
  selection?	
  



Deep	
  learning	
  for	
  action	
  selection?	
  

•  Key	
  intuitions	
  of	
  deep	
  learning	
  approach	
  
don’t	
  hold	
  in	
  traditional	
  control	
  models	
  
– No	
  compositionality	
  
– No	
  layered,	
  hierarchical	
  structure	
  
– No	
  model	
  that	
  supports	
  distributed	
  
representations	
  of	
  tasks,	
  goals,	
  …	
  

– Discrete	
  action	
  spaces	
  



Markov decision processes

A Markov decision process is one mathematical formulation of an optimal
control problem. It is defined by four objects (X,U, p(y|x, u), l(x, u))

• X is the state space

• U is the action space

• p(y|x, u) are the transition probabilities

• l(x, u) is the immediate cost for being in state x and choosing action u

Our goal is to choose a policy ⇡(x) mapping states to actions that
minimizes

v

⇡

(x) = E
y0=x
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4
t
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�1X

⌧=0
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Optimal cost-to-go function

• The optimal cost-to-go function is the expected cumulative cost for
starting at state x and acting optimally thereafter

• It encodes all relevant information about the future

• In particular, acting greedily with respect to the optimal cost-to-go
function is perfectly optimal

Andrew Saxe, Stanford University 15

Dynamic programming solution

• Optimal actions cannot be found by greedy optimization of the
immediate cost

• They must take into account all future cost

• The number of possible futures grows exponentially with time

• To solve the MDP, however, we can use the optimal cost-to-go
function

v
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that is,
⇡

⇤
(x) = argmin

⇡

v

⇡

(x)
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Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Problems?	
  

•  Discrete	
  action	
  space	
  

•  No	
  compositionality	
  

•  No	
  hierarchy	
  

•  Overly	
  Ilexible	
  cost	
  function	
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Discrete	
  action	
  space	
  

•  Typically,	
  at	
  each	
  time	
  step	
  choose	
  one	
  of	
  M	
  
discrete	
  actions	
  

•  Curse	
  of	
  dimensionality	
  

•  (all	
  possible	
  joint	
  angles	
  for	
  shoulder)	
  X	
  (all	
  
possible	
  joint	
  angles	
  for	
  elbow)	
  X	
  …	
  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Discrete	
  action	
  space	
  

•  No	
  notion	
  of	
  combining	
  subactions	
  to	
  form	
  a	
  
complete	
  action	
  

•  E.g.,	
  muscle	
  synergies	
  

•  Need	
  distributed,	
  combinatorial	
  
representation	
  of	
  actions	
  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Compositional	
  tasks	
  

•  No	
  notion	
  of	
  combining	
  subtasks	
  to	
  
accomplish	
  a	
  new	
  task	
  

Dynamic programming principle
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Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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transition structure and leverage it to evaluate actions
(Figure 1) [22,33!,34,35!,36,12!,37!,38!,39]. The second
involves explicit or implicit counterfactual structure,
where information about rewards not actually received
can be inferred or observed [40–42,13,43,44]. A typical
example is a serial reversal contingency, where a drop in
the value of one option implies an increase in the other’s
value. Purely reinforcement-based model-free RL would
be blind to such structure. Note, however, that while
such tasks go beyond model-free RL, they do not as
directly exercise the key affirmative features of model-
based RL as we have defined it, that is, the computation
of values using a sequential transition model of an
action’s consequences.

From both sorts of studies, the overall sense is that model-
based influences appear ubiquitous more or less wherever
the brain processes reward information. The most
expected of these influences are widespread reports about
model-based value signals in ventromedial prefrontal
cortex (vmPFC) and adjacent orbitofrontal cortex
(OFC), which have previously been identified with
goal-directed behavior using devaluation tasks [45,46].
vmPFC has been proposed to be the human homologue
of rat prelimbic cortex, which is required for goal-directed
behavior [8]. OFC is also implicated in model-based
Pavlovian valuation in rats and goal values in monkeys
[47,48], though understanding this area across species and
methods is plagued by multiple factors [49]. More unex-
pectedly, several reports now indicate that RPE correlates
in the ventral striatum — long thought to be a human
counterpart to the DA response and thus a core com-
ponent of the putative model-free system — also show

model-based influences [33!,34,44]. Even DA neurons,
the same cells that launched the model-free theories due
to their RPE properties [1,2], communicate information
not available to a standard model-free learner [41].

The harder part of this hunt, then, seems to be for neural
correlates of exclusively model-free signals, which are
surprisingly sparse given the prominence of the model-
free DA accounts. The most promising candidate may be
a region of posterior putamen that has been implicated in
extensively trained behavior in a habit study [17] and a
sequential decision task [37!], and may correspond to the
dorsolateral striatal area associated with habits in rodents
[18]. The foundation of both fMRI results, however, was
overtraining (a classic promoter of habits), rather than
whether these areas reflect values learned or updated by
model-free methods. Indeed, value correlates in a nearby
region of putamen have been reported to follow model-
based rather than model-free updating using the compu-
tational definition [34].

A different, promising path for isolating model-based RL
is neural correlates related to the model itself. Repres-
entations of anticipated future states or outcomes —
rather than just their consequences for reward — are what
defines model-based RL. Hippocampal recordings in the
rat have shown evidence of forward model ‘lookahead
sweeps’ to candidate future locations at maze choice
points [35!]. These data fit well with the spatial map-
encoding properties of hippocampus [50], and may permit
striatum to signal value for simulated rather than actually
experienced outcomes [36]. Hippocampus is similarly
implicated in a study that examines learning predictive
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Current Opinion in Neurobiology

Sequential task dissociating model-based from model-free learning. (a) A two-step decision-making task [33!], in which each of two options (A1, A2) at
a start state leads preferentially to one of two subsequent states (A1 to B, A2 to C), where choices (B1 versus B2 or C1 versus C2) are rewarded
stochastically with money. (b and c) Model-free and model-based RL can be distinguished by the pattern of staying versus switching of a top level
choice following bottom level winnings. A model-free learner like TD(1) (b), tends to repeat a rewarded action without regard to whether the reward
occurred after a common transition (blue, like A1 to B) or a rare one (red). A model-based learner (c) evaluates top-level actions using a model of their
likely consequences, so that reward following a rare transition (e.g. A1 to C) actually increases the value of the unchosen option (A2) and thus predicts
switching. Human subjects in [33!] exhibited a mixture of both effects.
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the number of shortest paths within the graph that pass through an index node.
An illustration, from Şimşek (2008), is shown in Figure 3.

(a) (b)

Fig. 3. (a) One state of the Tower of Hanoi problem. Disks are moved one at a
time between posts, with the restriction that a disk may not be placed on top of
a smaller disk. An initial state and goal state define each specific problem. (b)
Representation of the Tower of Hanoi problem as a graph. Nodes correspond to
states (disk configurations). Shades of gray indicate betweenness. Source: Şimşek
(2008).

Şimşek (2008) and Şimşek and Barto (2009) proposed that option discovery
might be fruitfully accomplished by identifying states at local maxima of graph
betweenness (for related ideas, see also Şimşek et al. (2005); Hengst (2002);
Jonsson and Barto (2006); Menache et al. (2002). They presented simulations
showing that an HRL agent designed to select subgoals (and corresponding op-
tions) in this way, was capable of solving complex problems, such as the Tower
of Hanoi problem in Figure 3(a), significantly faster than a non-hierarchical RL
agent.

As part of our research exploring the potential relevance of HRL to neural
computation, we evaluated whether these proposals for subgoal discovery might
relate to procedures used by human learners. The research we have completed so
far focuses on the identification of bottleneck states, as laid out by Şimşek and
Barto (2009). In what follows, we summarize the results of three experiments,
which together support the idea that the notion of bottleneck identification may
be useful in understanding human subtask learning.
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configuraBons	
  



Exploiting	
  compositionality:	
  
“Navigate	
  to	
  room	
  A	
  or	
  B”	
  

Can	
  respond	
  flexibly	
  to	
  a	
  
variety	
  of	
  navigaBon	
  tasks	
  
•  Find	
  food	
  or	
  water	
  

(specific	
  saBety	
  
experiments)	
  

•  Go	
  to	
  a	
  point,	
  while	
  
avoiding	
  door	
  #2	
  	
  

•  Important	
  note:	
  Not	
  
the	
  same	
  as	
  planning	
  
through	
  arbitrary	
  cost	
  
map	
  because	
  of	
  
boundary	
  state	
  
formulaBon.	
  



“Place	
  medium-­‐size	
  block	
  on	
  middle	
  
peg”	
  

Student Version of MATLAB

Student Version of MATLAB

Instantaneous	
  rewards	
   Cost-­‐to-­‐go/trajectory	
  



Exploiting	
  compositionality	
  

ComposiBonality	
  enables	
  rapid	
  response	
  to	
  novel	
  complex	
  
queries	
  
	
  
•  Stack	
  small	
  block	
  on	
  large	
  block	
  
•  Place	
  medium	
  block	
  on	
  peg	
  1,	
  small	
  block	
  on	
  peg	
  3	
  

	
  
•  Models	
  highly	
  pracBced	
  expert	
  quite	
  familiar	
  with	
  domain	
  
•  Can	
  be	
  combined	
  with	
  model-­‐based	
  search	
  



Multitask	
  z-­‐learning	
  	
  
for	
  action	
  selection	
  

•  New	
  algorithm	
  with	
  interesting	
  properties:	
  

–  Instantaneous	
  optimal	
  adaptation	
  to	
  new	
  terminal	
  state	
  
rewards	
  

–  Relies	
  on	
  careful	
  problem	
  formulation	
  to	
  permit	
  
compositionality	
  

–  Off-­‐policy	
  algorithm	
  over	
  states	
  (not	
  state/action	
  pairs)	
  
–  Compatible	
  with	
  function	
  approximation	
  

•  Compatible	
  with	
  model-­‐based	
  &	
  model-­‐free	
  accounts,	
  which	
  are	
  
tractable	
  in	
  the	
  LMDP	
  



Inferring	
  goals/wants/desires	
  

•  “Dogs	
  are	
  the	
  sort	
  of	
  agents	
  that	
  like	
  bones”	
  
–Tenenbaum	
  	
  

uration, obstacle shape and agent path. There were four
different goal configurations, displayed in columns 1–4 of
Fig. 3. Only the location of goal C changed across condi-
tions; goals A and B were always in the upper and lower
right corners, respectively. There were two different obsta-
cle shapes: ‘‘Solid” and ‘‘Gap”. Every environment shown
had a wall-like obstacle extending up from the bottom
edge. In the Solid conditions this wall was unbroken, while
in the Gap conditions it had a hole in the middle through
which the agent could pass. The first, fourth, and seventh
rows of Fig. 3 represent the Solid conditions, while the
remaining rows represent the Gap conditions.

Based on the goal configuration and obstacle shape, the
agent’s path was generated by making two choices: first,
which goal (A, B or C) the agent was heading toward, and
second, whether the agent went around the obstacle or
through it. The second choice only applied in the Gap con-
ditions; in the Solid conditions the agent could only move
around the obstacle. In Fig. 3, paths are grouped as ‘‘A”
paths, ‘‘B” paths and ‘‘C” paths, respectively. Because of
C’s varying location, there were eight unique C paths, while
there were just two unique A paths and two unique B paths
because the locations of A and B were fixed. All paths
started from the same point, marked with an ‘‘x” in Fig. 3.

Each condition included a number of trials, which var-
ied the length of the path shown before a judgment was re-
quired. Different conditions queried subjects at different
judgment points, selected at informative points along the
paths. Fig. 2a displays two stimuli with judgment points
of 7 and 11, respectively, as they were plotted for our sub-
jects. In Fig. 3, many of the initial trials are identical, and
only differ in their eventual destination (e.g. corresponding
trials in rows 1 and 4 of Fig. 3 are identical up to judgment
point 10). Subjects were only shown unique stimuli, and
after all redundant conditions were removed, there were
99 stimuli in total, all represented in Fig. 3.

3.1.4. Procedure
Participants were given a cover story to establish

assumptions about our experimental scenarios, including
the assumption of intentional agency, a model of agents’
environments, and a hypothesis space of agents’ goals. Par-

ticipants were told they would be viewing videos of mem-
bers of an intelligent alien species collected by scientists,
and that each video displayed a different alien moving to-
ward a different goal in the environment. They were in-
structed that aliens could not pass through walls, but
that they could pass through gaps in walls. They were told
that after each video, they would rate which goal the alien
was pursuing.

Stimulus trials were ordered with the earliest judgment
points presented first to prevent hysteresis effects from
showing longer trials before their shorter segments. Trials
with the same judgment points were shown in random or-
der. On each trial, the animation paused at a judgment
point, allowing participants to report their online infer-
ences of the agent’s goal at that point. Subjects first chose
which goal they thought was most likely (or if two or more
were equally likely, one of the most likely). After this
choice, subjects were asked to rate the likelihood of the
other goals relative to the most likely goal, on a nine-point
scale from ‘‘Equally likely”, to ‘‘Half as likely”, to ‘‘Extre-
mely unlikely”.

3.1.5. Modeling
Model predictions take the form of probability distribu-

tions over agents’ goals, given by Eq. (1) (specific versions
for M1, M2, M3 and H are provided in the Appendix).

Our models assumed that all goals were visible, given
by the three marked locations in our stimuli. M3 assumed
there were either 0 or 1 subgoals, which could correspond
to any location in the environment. To put people’s goal
inferences on the same scale as model predictions, sub-
jects’ ratings were normalized to sum to 1 for each stimu-
lus, then averaged across all subjects and renormalized to
sum to 1. The within-subjects normalization guaranteed
that all subjects’ ratings were given equal weighting in
the normalized between-subjects average.

3.2. Results

We present several analyses of how accurately M1, M2,
M3 and H predicted people’s online goal inferences from
Experiment 1. We begin with a qualitative analysis, which
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Fig. 2. Stimulus paradigm for Experiments 1 and 2. Each stimulus presented an animation of an agent’s path (marked by a dashed line) ending at a
judgment point: a pause in the animation that allowed participants to report their online inferences of the agent’s goal at that point. (a) Experiment 1:
online goal inference task. Subjects rated how likely each marked goal was at the judgment point. (b) Experiment 2: retrospective goal inference task.
Subjects rated how likely each marked goal was at an earlier judgment point, given by the ‘‘+” along the dashed line.
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  goals/wants/desires	
  

•  Corresponds	
  to	
  inverse	
  reinforcement	
  learning	
  	
  
	
  	
  	
  (Ng	
  &	
  Russell,	
  2000;	
  Dvijotham	
  &	
  Todorov,	
  2010)	
  
	
  
•  Observe	
  P	
  and	
  a	
  trajectory	
  resulting	
  from	
  ut	
  	
  
•  Infer	
  rt	
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  task	
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Goal	
  inference	
  

•  From	
  actions	
  and	
  physics,	
  can	
  infer	
  goals	
  

•  Lots	
  left	
  to	
  be	
  done	
  
– Hierarchically	
  structured	
  actions	
  
– Changing	
  goals	
  
	
  



Social	
  causal	
  learning	
  

Waismeyer,	
  Meltzoff,	
  &	
  Gopnik,	
  2014;	
  Goodman,	
  Baker,	
  &	
  Tenenbaum,	
  2009	
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Figure 4: The mean bet (likelihood rating) placed on each of the five possible causes of C. The Social condition (a) confirms the social-
causal model predictions (Fig. 2a). The Prior condition (c) confirms predictions of the social-causal model with strong prior (Fig. 2c). The
Self condition (b) reflects a reversion to the causal-only model (Fig. 2b), as expected, but seems to be mixed with residual social-causal
inferences—see Footnote 4.

causal knowledge to inform inferences, even when social con-
text information was available. To see whether this is a graded
integration of information sources, as predicted by the social-
causal model (Fig. 3), or an all-or-nothing gating effect of
prior knowledge, we exploit natural variation among the sce-
narios. The relationship between the plausibility rating of a
participant and their bet on “A and B” in the corresponding
scenario, can be used to further examine the effect of prior
knowledge on inferences. Pooling Social and Prior scenar-
ios, prior plausibility ratings explain 43% of the variance in
bets (r=0.66, p<0.001), as shown in Fig. 5.5 Within con-
ditions, causal structure inferences remain significantly cor-
related with the variation in plausibility judgments (r=0.46,
p<0.01 within the Social condition, r=0.56, p<0.001 within
the Prior condition). This result indicates that participants
continuously integrate prior causal knowledge with social
context information, rather than using prior causal knowledge
as a gate on social inference.

Over-imitation
The results of the previous sections show that generic infer-
ence abilities, combined with an understanding of causality
and agency, can result in rapid learning of causal knowledge.
Yet where there is rapid learning there is the possibility of go-
ing rapidly astray—are there situations in which social-causal
inference might lead to incorrect conclusions?

A number of authors have reported that children seem to
over-imitate adults, copying even actions which are, to adults,
clearly superfluous to bringing about an effect (Horner &
Whiten, 2005; Lyons et al., 2007; Meltzoff, 1995). For in-
stance Horner and Whiten (2005) present a “puzzle box” to
children and demonstrate a series of actions which culminate
in retrieving a prize from within the box. The box is trans-
parent, and some of these actions are plausibly related to the

5The correlation is higher for group means (r=0.85); we are,
however, primarily interested in the relationship within individual
participants.
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Figure 5: The mean bet (likelihood rating) of participants on “A
and B” according to their plausibility rating for B as a cause of C.
The graded effect of prior knowledge confirms the model predictions
(Fig. 3).

outcome, but one is not (for example, touching a rod to the top
of the box). When invited to retrieve the prize, children per-
form all the actions, including the superfluous one. Chimps
in a similar experiment did not over-imitate, leaving out the
implausible action. Lyons et al. (2007) investigated a num-
ber of possible explanations for over-imitation in children but
found it to be remarkably robust; the only manipulation they
report that reversed children’s over-imitation was removal of
physical contact between cause and (potential) effect (Lyons
et al., 2007, Expt. 2b). On the basis of these findings Lyons et
al. (2007) suggest that over-imitation reflects an “automatic
causal encoding” mechanism, with “boundary conditions” to
switch off this encoding (such as physical contact).

Our modeling results indicate that a separate principle
(such as automatic causal encoding) needn’t be invoked to
explain children’s over-imitation. If children’s prior beliefs
are weaker than adults’ (and, like adults, contact-causality is

2763

experience handling the objects to rule out trial-and-
error learning.

Two objects served as potential causes of a desirable
event. The desirable event was a marble dispensing from
a machine located 30 cm away from the objects (Fig-
ure 1). After observing this display, participants were
given a chance to design an intervention to obtain the
marble based on what they had observed.

Method

Participants

The participants were 32 24-month-olds, all within
!14 days of their birthday (M = 24.10 months, SD =

6.0 days). An equal number of males and females were
tested. An additional four toddlers began testing but
were excluded due to sound sensitivity (one), and
unwillingness to participate (three). Participants were
recruited by telephone from the university’s computer-
ized participant pool. Pre-established criteria for admis-
sion into the study were that the children be full-term,
normal birth weight, and have no known developmental
concerns. The sample was primarily middle- to upper-
middle-class with 78% White, 6% Asian, 16% Other, and
9% of Hispanic ethnicity according to parental report.

Stimuli

Two sets of wooden objects were used which differed
from each other in both shape and color. The set used
during the familiarization phase consisted of a green egg
(6 cm 9 4 cm) and a yellow square (7 cm 9 7 cm). The
set used during the test trial consisted of a red cylinder
(7.5 cm 9 3.25 cm) and a blue hemisphere (4.75 cm 9

9.75 cm). When placed on the table, the objects were
arranged on a tray with a box in the middle and the two

objects on either side (Figure 1A). The marble dispenser
was situated to the toddler’s right near the edge of the
table. When either object was placed on the box, it
always caused the box to illuminate and emit sound
(Figure 1B), but on ‘effective’ demonstrations only, a
marble was immediately dispensed from the marble
machine (the ‘effect’), which was highly desirable for the
children.

Procedure

Toddlers were tested in the laboratory while seated on
their parent’s lap at a black table (72 cm 9 120 cm). All
responses were video-recorded. The objects were out of
reach of the child, approximately 15 cm from the adult’s
side of the table. The experimental protocol consisted of
a short familiarization phase and then the test trial. The
test trial consisted of children observing probabilistic
events (the ‘stimulus-presentation period’) followed by a
30-s period when the test objects were presented to the
children to manipulate (‘response period’).

Throughout the experiment, the adult used everyday
social-interactive cues such as infant-directed speech and
mutual gaze with the child (Csibra & Gergely, 2011), but
crucially, the experimenter did not provide any causal
linguistic description of the events. For example, the
adult said, ‘Let’s watch’ but did not narrate the events
using causal language such as ‘I’m using the block to
make it go’ or ‘It’s my turn to make this work.’ This
safeguard was followed because past work suggests that
causal descriptions in particular can change children’s
performance on causal learning tasks (e.g. Bonawitz
et al., 2010). The experimental protocol thus incorpo-
rated attention-getting, pedagogical cues (Csibra &
Gergely, 2011), see below for quantification, but
excluded causal linguistic descriptions of the displays.

Familiarization phase. Because the procedure and appa-
ratus were novel, toddlers were first familiarized to the
general nature of the game. During familiarization, the
warm-up objects (which were not the same ones used
during the test trial) were deterministically effective in
producing the effect: When the experimenter placed one
object on the box, the desired effect always occurred (4
out of 4 times; 100% effective); when the experimenter
placed the other object on the same box, the desired
effect never occurred (0 out of 4 times; 0% effective).
Following this, all toddlers were given a choice to place
one of the two objects on the box and then presented
with the second object to place on the box. All 32
participants did so, and thus all of them placed both
objects on the box an equal number of times. This
familiarization phase showed children that their own

A B

Figure 1 A schematic display showing the causal chain of
events used in Experiments 1 and 2. (A) Two colored, wooden
objects depicted by the red cylinder (R) and the blue
hemisphere (B), serve as potential causes of a chain of events
that leads to the activation of a marble dispenser (MD). (B)
When placed on a box, the box illuminates (orange highlight)
and emits a sound (musical notes). This event is immediately
followed by the marble (black dot) dispensing from the marble
dispenser. A 30-cm gap separated the box and the marble
dispenser. (Figure is not drawn to scale, see text for
measurements).
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experience handling the objects to rule out trial-and-
error learning.

Two objects served as potential causes of a desirable
event. The desirable event was a marble dispensing from
a machine located 30 cm away from the objects (Fig-
ure 1). After observing this display, participants were
given a chance to design an intervention to obtain the
marble based on what they had observed.

Method

Participants

The participants were 32 24-month-olds, all within
!14 days of their birthday (M = 24.10 months, SD =

6.0 days). An equal number of males and females were
tested. An additional four toddlers began testing but
were excluded due to sound sensitivity (one), and
unwillingness to participate (three). Participants were
recruited by telephone from the university’s computer-
ized participant pool. Pre-established criteria for admis-
sion into the study were that the children be full-term,
normal birth weight, and have no known developmental
concerns. The sample was primarily middle- to upper-
middle-class with 78% White, 6% Asian, 16% Other, and
9% of Hispanic ethnicity according to parental report.

Stimuli

Two sets of wooden objects were used which differed
from each other in both shape and color. The set used
during the familiarization phase consisted of a green egg
(6 cm 9 4 cm) and a yellow square (7 cm 9 7 cm). The
set used during the test trial consisted of a red cylinder
(7.5 cm 9 3.25 cm) and a blue hemisphere (4.75 cm 9

9.75 cm). When placed on the table, the objects were
arranged on a tray with a box in the middle and the two

objects on either side (Figure 1A). The marble dispenser
was situated to the toddler’s right near the edge of the
table. When either object was placed on the box, it
always caused the box to illuminate and emit sound
(Figure 1B), but on ‘effective’ demonstrations only, a
marble was immediately dispensed from the marble
machine (the ‘effect’), which was highly desirable for the
children.

Procedure

Toddlers were tested in the laboratory while seated on
their parent’s lap at a black table (72 cm 9 120 cm). All
responses were video-recorded. The objects were out of
reach of the child, approximately 15 cm from the adult’s
side of the table. The experimental protocol consisted of
a short familiarization phase and then the test trial. The
test trial consisted of children observing probabilistic
events (the ‘stimulus-presentation period’) followed by a
30-s period when the test objects were presented to the
children to manipulate (‘response period’).

Throughout the experiment, the adult used everyday
social-interactive cues such as infant-directed speech and
mutual gaze with the child (Csibra & Gergely, 2011), but
crucially, the experimenter did not provide any causal
linguistic description of the events. For example, the
adult said, ‘Let’s watch’ but did not narrate the events
using causal language such as ‘I’m using the block to
make it go’ or ‘It’s my turn to make this work.’ This
safeguard was followed because past work suggests that
causal descriptions in particular can change children’s
performance on causal learning tasks (e.g. Bonawitz
et al., 2010). The experimental protocol thus incorpo-
rated attention-getting, pedagogical cues (Csibra &
Gergely, 2011), see below for quantification, but
excluded causal linguistic descriptions of the displays.

Familiarization phase. Because the procedure and appa-
ratus were novel, toddlers were first familiarized to the
general nature of the game. During familiarization, the
warm-up objects (which were not the same ones used
during the test trial) were deterministically effective in
producing the effect: When the experimenter placed one
object on the box, the desired effect always occurred (4
out of 4 times; 100% effective); when the experimenter
placed the other object on the same box, the desired
effect never occurred (0 out of 4 times; 0% effective).
Following this, all toddlers were given a choice to place
one of the two objects on the box and then presented
with the second object to place on the box. All 32
participants did so, and thus all of them placed both
objects on the box an equal number of times. This
familiarization phase showed children that their own

A B

Figure 1 A schematic display showing the causal chain of
events used in Experiments 1 and 2. (A) Two colored, wooden
objects depicted by the red cylinder (R) and the blue
hemisphere (B), serve as potential causes of a chain of events
that leads to the activation of a marble dispenser (MD). (B)
When placed on a box, the box illuminates (orange highlight)
and emits a sound (musical notes). This event is immediately
followed by the marble (black dot) dispensing from the marble
dispenser. A 30-cm gap separated the box and the marble
dispenser. (Figure is not drawn to scale, see text for
measurements).
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Social	
  causal	
  learning	
  

•  Novel	
  learning	
  setting	
  not	
  studied	
  in	
  
engineering	
  

•  From	
  desires	
  and	
  actions,	
  infer	
  physics/
causal	
  structure	
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Challenges	
  

•  Recursive	
  reasoning	
  

•  Hierarchy	
  

•  Beliefs	
  



The	
  brain	
  is	
  not	
  a	
  	
  
deep	
  linear	
  network	
  

•  Simple	
  models	
  help	
  hone	
  intuitions	
  and	
  are	
  an	
  important	
  
precursor	
  to	
  treating	
  more	
  complex	
  cases	
  

•  What	
  are	
  deep	
  linear	
  networks	
  good	
  for?	
  
–  Learning	
  dynamics	
  
–  SpeciIic	
  consequences	
  of	
  depth	
  
–  Conceptual	
  underpinnings	
  

•  What	
  aren’t	
  they	
  good	
  for?	
  
–  Understanding	
  increased	
  representational	
  power	
  due	
  to	
  
nonlinearities	
  

•  Must	
  check	
  behavior	
  in	
  deep	
  nonlinear	
  nets,	
  will	
  not	
  always	
  
coincide	
  with	
  linear	
  case	
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Conclusion	
  
•  Learning	
  in	
  a	
  deep,	
  chain-­‐like	
  structure	
  is	
  hard	
  

•  Overcoming	
  this	
  challenge	
  may	
  shape	
  how	
  the	
  
brain	
  learns	
  in	
  a	
  variety	
  of	
  contexts	
  

•  Explains	
  progressive	
  stage-­‐like	
  differentiation	
  
in	
  semantic	
  learning	
  

•  Spans	
  levels	
  of	
  analysis:	
  single	
  neurons	
  to	
  
aspects	
  of	
  semantic	
  cognition	
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Extensions	
  

Theory	
  of	
  
deep	
  
linear	
  

networks	
  

Perceptual	
  
learning	
  

SemanBc	
  
cogniBon	
  

Decision	
  
making	
  

Reinforcement	
  
learning	
  

Sparse	
  	
  
Parts-­‐based	
  

representaBons	
  

Experience	
  
dependent	
  
plasBcity	
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Thank	
  you!	
  

Andrew	
  Ng	
  

Jay	
  McClelland	
   Christoph	
  Schreiner	
  

Surya	
  Ganguli	
  



Thank	
  you!	
  
Warm	
  thanks	
  to	
  
	
  
•  Rachel	
  Lee	
  
•  Maneesh	
  Bhand	
  
•  Ritvik	
  Mudur	
  
•  Bipin	
  Suresh	
  
•  Koh	
  Pang	
  Wei	
  
•  Zhenghao	
  Chen	
  

•  Members	
  of	
  McClelland,	
  Ng,	
  Schreiner,	
  &	
  Ganguli	
  labs	
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•  Andrew	
  Maas	
  
•  Quoc	
  Le	
  
•  Ian	
  Goodfellow	
  
•  Chris	
  Baldassano	
  
•  Jeremy	
  Glick	
  
•  Juan	
  Gao	
  
	
  

•  Cynthia	
  Henderson	
  
•  Daniel	
  Hawthorne	
  
•  Dave	
  Jackson	
  
•  Bryan	
  Seybold	
  
•  Craig	
  Atencio	
  
•  Nick	
  Steinmetz	
  
•  Logan	
  Grosenick	
  



Questions?	
  
Warm	
  thanks	
  to	
  
	
  
•  Rachel	
  Lee	
  
•  Maneesh	
  Bhand	
  
•  Ritvik	
  Mudur	
  
•  Bipin	
  Suresh	
  
•  Koh	
  Pang	
  Wei	
  
•  Zhenghao	
  Chen	
  

•  Members	
  of	
  McClelland,	
  Ng,	
  Schreiner,	
  &	
  Ganguli	
  labs	
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•  Andrew	
  Maas	
  
•  Quoc	
  Le	
  
•  Ian	
  Goodfellow	
  
•  Chris	
  Baldassano	
  
•  Jeremy	
  Glick	
  
•  Juan	
  Gao	
  
	
  

•  Cynthia	
  Henderson	
  
•  Daniel	
  Hawthorne	
  
•  Dave	
  Jackson	
  
•  Bryan	
  Seybold	
  
•  Craig	
  Atencio	
  
•  Nick	
  Steinmetz	
  
•  Logan	
  Grosenick	
  



Biological	
  plausibility	
  
•  Gradient	
  descent	
  in	
  the	
  brain?	
  
•  Computational	
  level	
  hypothesis	
  
	
  
•  Backpropagation:	
  one	
  algorithm	
  among	
  many	
  
to	
  compute	
  gradient	
  

•  Other	
  candidate	
  algorithms:	
  	
  
– Generalized	
  recirculation	
  algorithm	
  
– Attention-­‐gated	
  reinforcement	
  learning	
  (AGREL)	
  
algorithm	
  	
  

	
  

ΔW = −λ
∂E
∂W



Dynamic	
  Isometry	
  in	
  nonlinear	
  nets	
  

Suggests	
  initialization	
  for	
  nonlinear	
  nets	
  
•  near-­‐isometry	
  on	
  subspace	
  of	
  large	
  dimension	
  
•  Singular	
  values	
  of	
  end-­‐to-­‐end	
  Jacobian	
  
	
  	
  	
  	
  	
  concentrated	
  around	
  1.	
  	
  
Scale	
  orthogonal	
  matrices	
  by	
  gain	
  g	
  to	
  counteract	
  contractive	
  
nonlinearity	
  
	
  
	
  
	
  
	
  
Just	
  beyond	
  edge	
  of	
  chaos	
  (g>1)	
  may	
  be	
  good	
  initialization	
  
	
  Andrew	
  Saxe	
   160	
  

0 1 2 3
x 10−5

0

50

100
q = 0.2

g 
= 

0.
9

0 2 4 6
x 10−3

0

20

40

60

g 
= 

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g 
= 

1

0 0.5 1 1.5 2
0

50

100

g 
= 

1.
05

0 2 4 6
0

100

200

300

400

g 
= 

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the
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•  g>1	
  speeds	
  up	
  30	
  layer	
  nonlinear	
  nets	
  

•  Dynamic	
  isometry	
  reduces	
  test	
  error	
  by	
  1.4%	
  pts	
  

Dynamic	
  Isometry	
  Initialization	
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MNIST	
  ClassificaBon	
  error,	
  epoch	
  1500	
   Train	
  	
  
Error	
  (%)	
  

Test	
  	
  
Error	
  (%)	
  

Glorot	
  (g=1,	
  random)	
   2.3	
   3.4	
  
g=1.1,	
  random	
   1.5	
   3.0	
  
g=1,	
  orthogonal	
   2.8	
   3.5	
  
Dynamic	
  Isometry	
  (g=1.1,	
  orthogonal)	
   0.095	
   2.1	
  

•  Tanh	
  network,	
  soumax	
  output,	
  500	
  units/layer	
  
•  No	
  regularizaBon	
  (weight	
  decay,	
  sparsity,	
  dropout,	
  etc)	
  



Fast	
  Training	
  from	
  Large	
  Gain	
  
Initializations	
  

•  Deep	
  networks	
  +	
  large	
  gain	
  factor	
  g	
  train	
  exceptionally	
  quickly	
  	
  
•  But	
  large	
  g	
  incurs	
  heavy	
  cost	
  in	
  generalization	
  performance	
  

	
  
•  Suggests	
  small	
  initial	
  weights	
  regularize	
  towards	
  smoother	
  functions	
  	
  
•  Training	
  difIiculty	
  arises	
  from	
  saddle	
  points,	
  not	
  local	
  minima	
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