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Linking	  learning	  and	  plasticity	  

•  Humans	  and	  other	  organisms	  are	  incredibly	  
sophisticated	  learners	  

•  Across	  a	  variety	  of	  tasks,	  we	  get	  much	  better	  
with	  practice	  

•  How	  do	  changes	  in	  synaptic	  strength	  across	  
the	  brain	  enable	  this	  learning?	  
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Perceptual	  Learning	  

•  Practicing	  orientation	  discrimination	  improves	  
behavioral	  performance	  
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Perceptual	  Learning	  

•  Practicing	  orientation	  discrimination	  improves	  
behavioral	  performance	  
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Perceptual	  Learning	  

•  Practicing	  orientation	  discrimination	  improves	  
behavioral	  performance	  
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The	  brain	  
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50	  billion	  neurons	  
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•  Changing	  connecBon	  strengths	  
thought	  to	  underlie	  learning	  

	  

•  Challenge:	  link	  changes	  at	  neural	  level	  
to	  changes	  at	  behavioral/
psychological	  level	  

h>p://1.bp.blogspot.com/_wbp_krRPdF0/TIomUBzg4GI/AAAAAAAAAIs/FOxBQ2ebrnw/s1600/Synapse-‐Structure.jpg	  



Depth	  

•  The	  brain	  has	  a	  layered	  structure	  

– Anatomically	  

– Physiologically	  

•  I	  will	  argue	  this	  strongly	  impacts	  learning	  
dynamics	  in	  the	  brain	  

Andrew	  Saxe	   9	  



Depth:	  Layered	  anatomy	  
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Depth:	  Layered	  anatomy	  
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NEOCORTICAL CIRCUITS 423

Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
04

.2
7:

41
9-

45
1.

 D
ow

nl
oa

de
d 

fr
om

 a
rjo

ur
na

ls
.a

nn
ua

lre
vi

ew
s.

or
g

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 - 

M
ai

n 
C

am
pu

s 
- R

ob
er

t C
ro

w
n 

La
w

 L
ib

ra
ry

 o
n 

03
/3

1/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Douglas	  &	  MarBn,	  2004	  



Depth:	  Layered	  physiology	  
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V2	  

V1	  

ReBna/
LGN	  

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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Edge	  detectors	  

Shape	  detectors	  

Object	  detectors	  

Ahissar	  &	  Hochstein,	  2004	  



ArtiIicial	  neurons	  
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Deep	  neural	  networks	  
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Deep	  learning	  in	  AI	  
•  Many-‐layered	  artiIicial	  neural	  
networks	  

•  Currently	  state-‐of-‐the-‐art	  on	  many	  
real	  world	  datasets	  
–  Object	  recognition	  
–  Speech	  recognition	  
–  Text	  processing	  

•  Black	  boxes	  

•  Nonlinearities	  resistant	  to	  theory	  
Lee	  et	  al.,	  2009	  

L1	  

L2	  

L3	  



Object	  Recognition	  

8 Olga Russakovsky* et al.

PASCAL ILSVRC
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

Andrew	  Saxe	   16	  

ImageNet	  large	  scale	  visual	  recogniBon	  challenge,	  Russakovsky	  et	  al.,	  2014	  

•  Decisively	  state	  of	  the	  art	  in	  visual	  object	  
recogniBon	  from	  images	  



Image	  captioning	  
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Google	  Brain,	  Vinyals	  et	  al.,	  2014	  



Why	  depth?	  
•  Compactly	  represent	  complex	  input-‐output	  
functions	  

•  Divide	  and	  conquer:	  slowly	  build	  up	  
complexity	  by	  composing	  simple	  elements	  

•  Transform	  inputs/outputs	  into	  suitable	  
internal	  representation	  

•  High	  performance	  on	  benchmark	  tasks	  

Andrew	  Saxe	   18	  



Depth	  complicates	  learning	  

•  Must	  choose	  distribution	  of	  changes	  across	  
layers	  

•  Introduces	  
– Coupling	  
– Symmetries	  

•  Learning	  often	  much	  slower	  

Andrew	  Saxe	   19	  



The	  coupling	  problem	  

Ahissar	  &	  Hochstein,	  2004	  

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their

TRENDS in Cognitive Sciences 

Simple

anterior IT

Complex

IT

...

Learning generalizes
over orientation,
location and form

Learning specific
to orientation;
generalizes over
location

Learning specific
to orientation
and location

Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.

Opinion TRENDS in Cognitive Sciences Vol.8 No.10 October 2004 459

www.sciencedirect.com

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.

TRENDS in Cognitive Sciences 

With

Without

Mask
SOA

Performance

40

60

80

100

0 50 100 150
n=15

Initial

Stimuli(a) (b)

%
 c

or
re

ct

SOA (ms)

After training

Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.

Opinion TRENDS in Cognitive Sciences Vol.8 No.10 October 2004 459

www.sciencedirect.com

Change	  V4	  



The	  symmetry	  problem	  

Ahissar	  &	  Hochstein,	  2004	  

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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Slow	  learning	  
Small	  random	  initial	  conditions	  
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Breakthrough:	  	  
Unsupervised	  layerwise	  pretraining	  
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IT	  

V4	  

V1	  

ReBna/
LGN	  

Suppose	  you	  want	  to	  
recognize	  faces.	  
	  
First	  learn	  a	  rich	  hierarchy	  
of	  general	  purpose	  features	  
for	  the	  visual	  world.	  



Supervised	  Iine	  tuning	  
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IT	  

V4	  

V1	  

ReBna/
LGN	  

Then	  learn	  the	  actual	  task	  
you	  care	  about.	  



Faster	  deep	  learning	  
Small	  random	  initial	  

conditions	   Pretrained	  initial	  conditions	  
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Computational	  hypotheses	  
•  H1:	  Depth	  enables	  compact	  representation	  of	  complex	  tasks	  

•  H2:	  Naïve	  deep	  learning	  is	  slow	  

•  H3:	  Unsupervised	  layerwise	  pretraining	  speeds	  deep	  learning	  

•  H4:	  Unsupervised	  pretraining	  improves	  generalization	  

•  H5:	  Supervised	  Iine	  tuning	  follows	  gradient	  direction	  

•  H6:	  Domain	  general	  approach	  
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Understanding	  Depth	  

•  What	  is	  the	  speciIic	  impact	  of	  depth	  on	  
learning	  dynamics?	  
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Understanding	  Depth	  

•  What	  is	  the	  speciIic	  impact	  of	  depth	  on	  
learning	  dynamics?	  

•  Wanted:	  Theory	  that	  describes	  size	  &	  timing	  
of	  changes	  across	  layers	  
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Outline	  

•  Part	  1:	  Theory	  of	  deep	  linear	  learning	  

•  Part	  2:	  Applications	  
– Critical	  period	  plasticity	  
– Perceptual	  learning	  
– Semantic	  cognition	  
– Perceptual	  decisions	  
– Reinforcement	  learning	  
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Towards	  a	  theory	  of	  deep	  learning	  dynamics	  

	  
– What	  is	  learned	  when?	  

– How	  does	  learning	  speed	  scale	  with	  depth?	  
	  
– How	  do	  different	  weight	  initializations	  impact	  
learning	  speed?	  
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Deep	  linear	  neural	  networks	  

•  Develop	  theory	  using	  a	  simple	  model	  class	  

•  Particularly	  for	  brain	  sciences,	  crucial	  to	  
have	  a	  minimal,	  tractable	  model	  
– Conceptual	  clarity	  
– Unambiguous	  predictions	  
–  Isolate	  contribution	  of	  depth	  
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Deep	  network	  
•  Little	  hope	  for	  a	  complete	  theory	  with	  arbitrary	  
nonlinearities	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)
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Deep	  linear	  network	  
•  Use	  a	  deep	  linear	  network	  as	  a	  starting	  point.	  

x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)
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Deep	  linear	  network	  
•  Input-‐output	  map:	  Always	  linear	  

•  Isolates	  impact	  of	  depth—little	  else	  going	  on	  

y = Wi

i=1

D

∏
"

#
$

%

&
'x ≡Wtot x
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Trivial?	  
Plateaus	  and	  sudden	  

transitions	  
Faster	  convergence	  from	  

pretrained	  initial	  conditions	  
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•  Build	  intuiBons	  for	  nonlinear	  case	  by	  analyzing	  linear	  case	  
•  Will	  give	  exact	  analyBc	  descripBon	  of	  these	  error	  curves	  



Gradient	  descent	  learning	  
•  Minimize	  squared	  error	  on	  data	  

•  Gradient	  descent	  dynamics:	  Nonlinear;	  coupled;	  nonconvex	  

•  Useful	  for	  studying	  learning	  dynamics,	  not	  representation	  power.	  

yµ − Wi

i=1

D

∏
#

$
%

&

'
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∑

Final Report: Convergence properties of deep linear

networks
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1 Introduction

Deep learning approaches have realized remarkable performance across a range of application areas
in machine learning, from computer vision [1, 2] to speech recognition [3] and natural language
processing [4], but the complexity of deep nonlinear networks has made it difficult to develop a
comprehensive theoretical understanding of deep learning. For example, the necessary conditions
for convergence, the speed of convergence, and optimal methods for initialization are based pri-
marily on empirical results without much theoretical support. As a first step in understanding the
learning dynamics of deep nonlinear networks, we can analyze deep linear networks which compute
y = W

D

W

D�1 · · ·W 2
W

1
x, where x, y are input and output vectors respectively, and the W

i are
D weight matrices in this D + 1 layer deep network. Although these networks are no more expres-
sive than a single linear map y = Wx (and therefore unlikely to yield high accuracy in practice),
we have previously shown [5] that they do exhibit nonlinear learning dynamics similar to those ob-
served in nonlinear networks. By precisely characterizing how the weight matrices evolve in linear
networks, we may gain insight into the properties of nonlinear networks with simple nonlinearities
(such as rectified linear units).

In this progress report, we show preliminary results for continuous batch gradient descent, in which
the gradient step size is assumed to be small enough to take a continuous time limit. By the end of
the project, we hope to obtain similar results for discrete batch gradient descent (with a discrete step
size) and stochastic (online) gradient descent.

2 Preliminaries and Previous Work

A deep linear network maps input vectors x to output vectors y =

⇣Q
D

i=1 W
i

⌘
x ⌘ Wx. We wish

to minimize the squared error on the training set {xµ

, y

µ}P
µ=1, l(W ) =

P
P

µ=1 kyµ �Wx

µk2.

The batch gradient descent update for a layer l is

�W

l

= �

PX

µ=1

 
DY

i=l+1

W

i

!
T

"
y

µ

x

µT �
 

DY

i=1

W

i

!
x

µ

x

µT

# 
l�1Y

i=1

W

i

!
T

, (1)

where
Q

b

i=a

W

i

= W

b

W

(b�1) · · ·W (a�1)
W

a with the caveat that
Q

b

i=a

W

i

= I if a > b.

The minimizing W can be found analytically, by setting the derivative of the loss to zero:
PX

µ=1

(y

µ �Wx

µ

)x

µT

= 0 (2)

Let ⌃xx ⌘
P

P

µ=1 x
µ

x

µT be the input correlation matrix, and ⌃

yx ⌘
P

P

µ=1 y
µ

x

µT be the input-
output correlation matrix. The optimal W is

W

⇤
= ⌃

yx

(⌃

xx

)

�1 (3)

1

l =1,,D
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)



Gradient	  Descent	  Learning	  

•  Make	  small	  change	  in	  weights	  that	  most	  
rapidly	  improves	  task	  performance	  

•  Change	  each	  weight	  in	  proportion	  to	  the	  
gradient	  of	  the	  error	  ΔW = −λ

∂E
∂W



Resolving	  symmetries	  
•  Could	  change	  IT;	  Could	  change	  V1	  

•  What	  would	  most	  rapidly	  improve	  task	  performance?	  
Ahissar	  &	  Hochstein,	  2004	  

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Simple

anterior IT

Complex

IT

...

Learning generalizes
over orientation,
location and form

Learning specific
to orientation;
generalizes over
location

Learning specific
to orientation
and location

Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Input	  correlaBons:	  
Input-‐output	  correlaBons:	  

and the network’s feature output. This gradient descent procedure yields the learning rule

�W 21 = �W 32T
�
yµxµT �W 32W 21xµxµT

�
(1)

�W 32 = �
�
yµxµT �W 32W 21xµxµT

�
W 21T , (2)

for each example µ, where � is a small learning rate. We imagine that training is divided into a
sequence of learning epochs, and in each epoch, the above rules are followed for all P examples in
random order. As long as � is su�ciently small so that the weights change by only a small amount
per learning epoch, we can average (1)-(2) over all P examples and take a continuous time limit to
obtain the mean change in weights per learning epoch. Let X = [x1x2 · · ·xP ] be a matrix consisting
of all input examples, and Y = [y1y2 · · · yP ] be a matrix consisting of the corresponding output
vectors. Over the course of an epoch, the averaged system performs gradient descent on the sum
of the squared error (SSE) of all patterns, defined as

SSE(W 21,W 32) =
��Y �W 32W 21X

��2
F

(3)

where kAkF =
qP

i,j A
2
ij is the Frobenius norm of a matrix. Gradient descent on the SSE is

controlled purely by the second order statistics of the training set, and gives rise to the di↵erential
equations

⌧
d

dt
W 21 = W 32T

�
⌃31 �W 32W 21⌃11

�
(4)

⌧
d

dt
W 32 =

�
⌃31 �W 32W 21⌃11

�
W 21T , (5)

where
⌃11 ⌘ XXT (6)

is an N1 ⇥N1 input correlation matrix,

⌃31 ⌘ Y XT (7)

is an N3 ⇥N1 input-output correlation matrix, and

⌧ ⌘ P

�
. (8)

Here t measures time in units of learning epochs; as t varies from 0 to 1, the network has seen P
examples corresponding to one learning epoch. We note that, although the network we analyze is
completely linear with the simple input-output map y = W 32W 21x, the gradient descent learning
dynamics given in Eqns. (4)-(5) are nonlinear.

1.1 Learning dynamics with orthogonal inputs

Our fundamental goal is to understand the dynamics of learning in (4)-(5) as a function of the
input statistics ⌃11 and ⌃31. In general, the outcome of learning will reflect an interplay between
the perceptual correlations in the examples, described by ⌃11, and the input-output correlations
described by ⌃31. To begin, though, we further simplify the analysis by focusing on the case

3
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

(see	  paper	  for	  	  
more	  general	  	  
input	  correlaBons)	  



Fixed	  points	  (Baldi	  &	  Hornik,	  1989)	  

•  All	  Iixed	  points	  are	  global	  minima	  or	  saddle	  pts	  
•  As	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  weights	  approach	  

•  (Baldi	  &	  Hornik,	  1989;	  Sanger,	  1989)	  

•  Well-‐known	  end	  point	  of	  learning	  
•  But	  what	  dynamics	  occur	  along	  the	  way?	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

t→∞
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

→
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Timescale	  of	  learning	  

•  Each	  mode	  is	  learned	  in	  time	  

•  Singular	  values	  of	  input-‐output	  correlations	  
determine	  learning	  speed	  
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first
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τ	   1/Learning	  rate	  

s	   Singular	  value	  



Deeper	  networks	  
•  Can	  generalize	  to	  arbitrary	  depth	  network	  

•  Each	  effective	  singular	  value	  a	  evolves	  
independently	  according	  to	  

	  
•  In	  deep	  networks,	  combined	  gradient	  is	  
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τ
d
dt
a = (Nl −1)a

2−2 (Nl−1)(s− a)
τ	   1/Learning	  rate	  

s	   Singular	  value	  

Nl	   #	  layers	  

O Nl τ( )



Optimal	  learning	  rate	  scaling	  

•  Deep	  net	  learning	  time	  depends	  on	  optimal	  
(largest	  stable)	  learning	  rate	  

•  Estimate	  by	  taking	  inverse	  of	  maximal	  eigenvalue	  
of	  Hessian	  over	  relevant	  region	  

•  Optimal	  learning	  rate	  scales	  as	  
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O 1 Nl( ) (Nl	  =	  #	  layers)	  



Deep	  linear	  learning	  speed	  

•  How	  does	  learning	  speed	  retard	  with	  depth?	  
	   	   	   	   	  	  

•  Time	  difference	  for	  deep	  net	  vs	  3	  layer	  net	  is	  
	  
	  
•  Very	  deep	  linear	  network	  can	  be	  only	  a	  
Binite	  time	  slower	  than	  shallow	  one!	  

Andrew	  Saxe	   68	  

s	   Singular	  value	  

a(0)	   IniBal	  mode	  strength	  

-‐For	  special	  iniBal	  condiBons	  and	  O(1)	  iniBal	  mode	  strength	  

t∞ − t3 ≈O s / a(0)( )



Deep	  linear	  learning	  speed	  
•  Intuition:	  
	  
– Gradient	  norm	  

– Learning	  rate	  

– Learning	  time	  

•  Deep	  learning	  can	  be	  fast	  with	  the	  right	  ICs.	  
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O Nl( )

O 1 Nl( )

O 1( )

(Nl	  =	  #	  layers)	  



MNIST	  learning	  speeds	  
•  Trained	  deep	  linear	  nets	  on	  MNIST	  digit	  classiIication	  

•  Depths	  ranging	  from	  3	  to	  100	  
•  1000	  hidden	  units/layer	  (overcomplete)	  
•  Decoupled	  initial	  conditions	  with	  Iixed	  initial	  mode	  
strength	  

•  Batch	  gradient	  descent	  on	  squared	  error	  
•  Optimized	  learning	  rates	  for	  each	  depth	  

•  Calculated	  epoch	  at	  which	  error	  fell	  below	  Iixed	  
threshold	  
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MNIST	  learning	  speeds	  
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Why	  is	  unsupervised	  pretraining	  fast?	  

Erhan	  et	  al.,	  2010	  
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early examples is important even in a large-scale setting,
we propose to study the online learning case, where the
number of training examples is very large (potentially in-
finite). In a standard interpretation of a canonical (L

1

/L
2

regularizer), its effect diminishes in such a setting. This
is because the prior defined by it should be in principle be
overcome by the likelihood from the ever-increasing data.

In this paper we discuss the surprising result that the ef-
fect of pre-training is maintained as the size of the dataset
grows. We shall argue that the interplay between the non-
convexity of the training objective and the clever unsuper-
vised initialization technique is the reason for this.

6.1 InfiniteMNIST

The next set of results point in this direction and is the
most surprising finding of this paper. Figure 3 shows the
online classification error (on the next block of examples)
for 6 architectures trained on InfiniteMNIST: 1 and 3-
layer DBNs, 1 and 3-layer SDAE, as well as 1 and 3-layer
networks without pre-training. Note that stochastic gradi-
ent descent in online learning is a stochastic gradient de-
scent optimization of the generalization error, so good on-
line error in principle means that we are optimizing well the
training criterion. We can draw several observations from
these results. First, 3-layer networks without pre-training
are worse at generalization, compared to the 1-layer equiv-
alent. It seems that even in an online setting, with very
large amounts of data, optimizing deep networks is harder
than shallow ones. Second, 3-layer SDAE models seem
to generalize better than 3-layer DBNs. Finally and most
surprisingly, the pre-training advantage does not vanish as
the number of training examples increases, on the contrary.
These results seem to support an optimization effect expla-
nation for pre-training.

Figure 3: Comparison between 1 and 3-layer networks trained on
InfiniteMNIST. 3-layer models have 800-1200 units/layer, 1-
layer models have 2500 units in the hidden layer.

Note that the number of hidden units of each model is a
hyperparameter. So theoretical results, such as the Univer-
sal Approximation Theorem, suggest that 1-layer networks
without pre-training should in principle be able to repre-
sent the input distribution as capacity and data grow, as is
the case in this experiment2. Instead, without pre-training,
it seems that the networks are not able to take advantage of
the additional capacity, which again points towards an opti-
mization explanation. It is clear, however, that the starting
point of the non-convex optimization matters, even for
networks that are seemingly “easier” to optimize (1-layer
ones), which supports our hypothesis and favors a regular-
ization interpretation.

6.2 The Influence of Early Examples

In the case of InfiniteMNIST we operate in an online
stochastic optimization regime, where we try to find a local
minimum of a highly non-convex objective function. It is
then interesting to study to what extent the outcome of this
optimization is influenced by the examples seen at different
points during training, and whether the early examples have
a stronger influence (which would not be the case in the
convex case).

To quantify the variance of the outcome and to compare
these variances for models with and without pre-training,
we proceeded with the following experiment: given a
dataset with 10 million examples, we vary the first million
examples (across 10 different random draws, sampling a
different set of 1 million examples each time) and keep the
other ones fixed. After training the (10) models, we mea-
sure the variance of the output of the networks on a fixed
test set (i.e. we measure the variance in function space).
We then vary the next million examples in the same fash-
ion, and so on, to see how much each of the ten parts of the
training set influenced the final function.

Figure 4 shows the outcome of such an analysis. The sam-
ples at the beginning3 do seem to influence the output of the
networks more than the ones at the end. However, this vari-
ance is lower for the networks that have been pre-trained.
In addition to that, one should note that the variance of the
pre-trained network at 0.25 (i.e. the variance of the output
as a function of the first samples used for supervised train-
ing) is significantly lower than the variance of the super-
vised network. Such results imply that unsupervised pre-
training can be seen as a sort of variance reduction tech-
nique, consistent with a regularization role. Finally, both
networks have higher output variances as a function of the
last examples used for optimization.

2In a limited sense, of course, since we are obviously not able
to explore unbounded layer sizes and datasets.

3Which are unsupervised examples, for the red curve.

Deep	  linear	  network	  
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The	  crucial	  question:	  	  
Initial	  mode	  scaling	  

•  Learning	  speed	  

•  If	  a(0)	  gets	  smaller	  with	  more	  layers,	  deep	  
learning	  is	  slow	  

•  If	  a(0)	  stays	  constant	  with	  more	  layers,	  deep	  
learning	  is	  fast	  	  
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t∞ − t3 ≈O s / a(0)( )



Why	  are	  small	  random	  weights	  slow?	  
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a(t) = b1(t)b2 (t) bNl (t)…	  	  

EffecBve	  singular	  value	   Layer	  strengths	  

b1(t)b2 (t)

a(t)



Why	  are	  small	  random	  weights	  slow?	  

•  Learning	  delay	  

•  Initial	  scaling	  

•  Learning	  is	  slow	  due	  to	  very	  small	  initial	  
conditions—stuck	  on	  plateau	  right	  by	  saddle	  pt	  

•  Not	  due	  to	  saturating	  nonlinearities	  

Andrew	  Saxe	   75	  

a(0) = b1(0)b2 (0) bNl (0) ≈O(c
Nl )…	  	  

t∞ − t3 ≈O s / a(0)( )

c <1



Deep	  linear	  unsupervised	  
pretraining	  

•  Pretraining	  with	  autoencoders	  is	  simple	  

•  Each	  weight	  matrix	  comes	  to	  be	  orthogonal	  
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Why	  are	  pretrained	  weights	  fast?	  

•  Learning	  delay	  

•  Pretraining	  initializes	  all	  bi(0)=1	  

•  Initial	  scaling	  

•  Learning	  is	  fast—have	  moved	  away	  from	  saddle	  pt	  
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The	  effect	  of	  pretraining	  

•  Direct	  training	  time	  scales	  exponentially	  with	  depth	  

•  Pretraining	  +	  Iine-‐tuning	  time	  scales	  linearly	  with	  
depth	  

	  
	  	  

Andrew	  Saxe	   78	  

tPT+FT ≈O Nl log
1
b0
2ε

"

#
$

%

&
'

"

#
$$

%

&
''

tDT ≈O
1
b0
Nl

"

#
$

%

&
'



Depth-‐independent	  training	  time	  
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Time	  to	  criterion	   Op:mal	  learning	  rate	  

•  Deep	  linear	  networks	  on	  MNIST	  
•  Glorot:	  Scaled	  random	  iniBalizaBon	  (Glorot	  &	  Bengio,	  2010)	  

•  Pretrained	  and	  orthogonal	  have	  fast	  depth-‐independent	  
training	  Bmes!	  



Revised	  conceptual	  picture	  
•  Nonlinearities	  not	  the	  culprit	  

–  Naïve	  deep	  learning	  is	  slow	  even	  in	  the	  absence	  of	  	  
•  local	  minima	  
•  saturating	  nonlinearities	  

•  Plateaus	  near	  saddle	  points	  are	  the	  culprit	  

–  Layer	  strengths	  close	  to	  zero,	  when	  multiplied	  together,	  
are	  exponentially	  closer	  
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Cartoon	  Error	  Surface	  
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Cartoon	  Error	  Surface	  

Error	  

Parameter	  

Random	  iniBalizaBon	  



Previous	  Intuition	  

•  Overwhelmingly	  likely	  to	  end	  in	  local	  
minimum	  

•  Unsupervised	  pretraining	  combats	  this	  by	  
starting	  in	  good	  basin	  of	  attraction	  
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Cartoon	  Error	  Surface	  

Error	  

Parameter	  
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Actual	  Error	  Surface	  

Error	  
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Saddle	  Point	  
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Actual	  Error	  Surface	  

•  No	  local	  optima	  
•  All	  minima	  are	  global	  minima	  
•  (Baldi	  &	  Hornik,	  1989)	  

•  Gets	  stuck	  on	  plateau	  near	  saddle	  point	  

•  Unsupervised	  pretraining	  combats	  this	  by	  
increasing	  initial	  scaling	  
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Actual	  Error	  Surface	  

Error	  

0	   b*	  -‐b*	  
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Actual	  Error	  Surface	  

Error	  

0	   b*	  -‐b*	  
Layer	  Mode	  Strength	  
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Nonlinear	  deep	  networks?	  

•  Theory	  describes	  how	  deep	  linear	  networks	  
behave	  

•  Need	  to	  verify	  behavior	  in	  nonlinear	  nets	  

Andrew	  Saxe	   89	  



30	  layer	  tanh	  networks	  
•  Deep	  networks	  +	  large	  initializations	  train	  exceptionally	  quickly	  	  
•  Can	  compute	  gain	  g	  necessary	  to	  overcome	  compressive	  nonlinearities	  

	  
•  These	  improved	  initializations	  have	  played	  a	  part	  in	  recent	  SOTA	  
systems	  (He	  et	  al.,	  2015;	  van	  den	  Oord	  et	  al.,	  2015;	  Le	  et	  al.,	  2015).	  	  
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Few	  local	  minima,	  many	  saddle	  points	  

Dauphin	  et	  al.,	  “Identifying	  and	  attacking	  the	  saddle	  point	  problem	  
in	  high-‐dimensional	  non-‐convex	  optimization.”	  Arxiv,	  2014	  	  
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Figure 1: (a) and (c) show how critical points are distributed in the ✏–↵ plane. Note that they
concentrate along a monotonically increasing curve. (b) and (d) plot the distributions of eigenvalues
of the Hessian at three different critical points. Note that the y axes are in logarithmic scale. The
vertical lines in (b) and (d) depict the position of 0.

of the student’s hidden units to mimic the teacher’s hidden units. Interestingly, this exit from the
plateau is achieved by following directions of negative curvature associated with a saddle point.

Mizutani and Dreyfus (2010) look at the effect of negative curvature on learning and implicitly at
the effect of saddle points in the error surface. Their findings are similar. They show that the error
surface of a single layer MLP has saddle points where the Hessian matrix is indefinite.

3 Experimental validation of the prevalence of saddle points

In this section, we experimentally test whether the theoretical predictions presented by Bray and
Dean (2007) for random Gaussian fields hold for neural networks. To our knowledge, this is the
first attempt to measure the relevant statistical properties of neural network error surfaces and to
test if the theory developed for random Gaussian fields generalizes to such cases.

In particular, we are interested in how the critical points of a single layer MLP are distributed in the
✏–↵ plane, and how the eigenvalues of the Hessian matrix at these critical points are distributed. We
used a small MLP trained on a down-sampled version of MNIST and CIFAR-10. Newton method
was used to identify critical points of the error function. The results are in Fig. 1. More details
about the setup are provided in the supplementary material.

This empirical test confirms that the observations by Bray and Dean (2007) qualitatively hold for
neural networks. Critical points concentrate along a monotonically increasing curve in the ✏–↵
plane. Thus the prevalence of high error saddle points do indeed pose a severe problem for training
neural networks. While the eigenvalues do not seem to be exactly distributed according to the
semicircular law, their distribution does shift to the left as the error increases. The large mode at 0
indicates that there is a plateau around any critical point of the error function of a neural network.

4 Dynamics of optimization algorithms near saddle points

Given the prevalence of saddle points, it is important to understand how various optimization
algorithms behave near them. Let us focus on non-degenerate saddle points for which the Hessian
is not singular. These critical points can be locally analyzed by re-parameterizing the function
according to Morse’s lemma below (see chapter 7.3, Theorem 7.16 in Callahan (2010) or the
supplementary material for details):

f(✓⇤ + �✓) = f(✓⇤) +
1
2

n✓X

i=1

�i�v2
i , (1)

where �i represents the ith eigenvalue of the Hessian, and �vi are the new parameters of the model
corresponding to motion along the eigenvectors ei of the Hessian of f at ✓⇤.

A step of the gradient descent method always points in the right direction close to a saddle point
(SGD in Fig. 2). If an eigenvalue �i is positive (negative), then the step moves toward (away) from
✓⇤ along �vi because the restriction of f to the corresponding eigenvector direction �vi, achieves
a minimum (maximum) at ✓⇤. The drawback of the gradient descent method is not the direction, but
the size of the step along each eigenvector. The step, along any direction ei, is given by ��i�vi,
and so small steps are taken in directions corresponding to eigenvalues of small absolute value.
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Figure 1: (a) and (c) show how critical points are distributed in the ✏–↵ plane. Note that they
concentrate along a monotonically increasing curve. (b) and (d) plot the distributions of eigenvalues
of the Hessian at three different critical points. Note that the y axes are in logarithmic scale. The
vertical lines in (b) and (d) depict the position of 0.

of the student’s hidden units to mimic the teacher’s hidden units. Interestingly, this exit from the
plateau is achieved by following directions of negative curvature associated with a saddle point.

Mizutani and Dreyfus (2010) look at the effect of negative curvature on learning and implicitly at
the effect of saddle points in the error surface. Their findings are similar. They show that the error
surface of a single layer MLP has saddle points where the Hessian matrix is indefinite.

3 Experimental validation of the prevalence of saddle points

In this section, we experimentally test whether the theoretical predictions presented by Bray and
Dean (2007) for random Gaussian fields hold for neural networks. To our knowledge, this is the
first attempt to measure the relevant statistical properties of neural network error surfaces and to
test if the theory developed for random Gaussian fields generalizes to such cases.

In particular, we are interested in how the critical points of a single layer MLP are distributed in the
✏–↵ plane, and how the eigenvalues of the Hessian matrix at these critical points are distributed. We
used a small MLP trained on a down-sampled version of MNIST and CIFAR-10. Newton method
was used to identify critical points of the error function. The results are in Fig. 1. More details
about the setup are provided in the supplementary material.

This empirical test confirms that the observations by Bray and Dean (2007) qualitatively hold for
neural networks. Critical points concentrate along a monotonically increasing curve in the ✏–↵
plane. Thus the prevalence of high error saddle points do indeed pose a severe problem for training
neural networks. While the eigenvalues do not seem to be exactly distributed according to the
semicircular law, their distribution does shift to the left as the error increases. The large mode at 0
indicates that there is a plateau around any critical point of the error function of a neural network.

4 Dynamics of optimization algorithms near saddle points

Given the prevalence of saddle points, it is important to understand how various optimization
algorithms behave near them. Let us focus on non-degenerate saddle points for which the Hessian
is not singular. These critical points can be locally analyzed by re-parameterizing the function
according to Morse’s lemma below (see chapter 7.3, Theorem 7.16 in Callahan (2010) or the
supplementary material for details):

f(✓⇤ + �✓) = f(✓⇤) +
1
2

n✓X

i=1

�i�v2
i , (1)

where �i represents the ith eigenvalue of the Hessian, and �vi are the new parameters of the model
corresponding to motion along the eigenvectors ei of the Hessian of f at ✓⇤.

A step of the gradient descent method always points in the right direction close to a saddle point
(SGD in Fig. 2). If an eigenvalue �i is positive (negative), then the step moves toward (away) from
✓⇤ along �vi because the restriction of f to the corresponding eigenvector direction �vi, achieves
a minimum (maximum) at ✓⇤. The drawback of the gradient descent method is not the direction, but
the size of the step along each eigenvector. The step, along any direction ei, is given by ��i�vi,
and so small steps are taken in directions corresponding to eigenvalues of small absolute value.
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Qualitatively	  similar	  error	  surface	  

Deep	  Linear	  Network	  

Under review as a conference paper at ICLR 2015

Figure 9: Linear interpolation from a small random initialization point to a solution for a linear
regression model of depth 2. This shows the same qualitative features as our linear interpolation
experiments for neural networks: a flattening of the objective function near the saddle point at the
origin, and only one minimum within this 1-D subspace.

Figure 10: Left) Interpolation between two solutions to deep linear regression. Though these two
solutions lie on connected manifold of globally minimal values, the straight line between them en-
counters a barrier of higher cost. The curve for the low dimensional linear model has all the same
qualitative characteristics as the curve for the high dimensional non-linear networks we studied.
Right) Interpolation between a random point with large norm and an solution to deep linear regres-
sion. As with the neural network, this search does not encounter any minima other than the solution
used to initialize the search.

Specifically, we show that the problem of training y = w1w2x to output 1 when x = 1 using mean
squared error is sufficient to produce all of the qualitative features of neural network training that
our linear interpolation experiments have exposed. See Fig. 9 and Fig. 10.

6 DISCUSSION

The reason for the success of SGD on a wide variety of tasks is now clear: these tasks are relatively
easy to optimize. The primary difficulty is finding the correct search direction. While this task is still
difficult, it is not nearly as difficult as escaping sequences of local minima or threading a winding,
high-dimensional ravine.

This work has only considered neural networks that perform very well. It is possible that these neural
networks perform well because extensive hyperparameter search has found problems that SGD is
able to optimize easily, but that other hyperparameters correspond to optimization problems that are
too hard. In particular, it seems likely that very large neural networks are easier to fit to a particular
task.

Future work should aim to characterize the set of problems that are easy for SGD. Perhaps more
advanced optimization algorithms could allow the training of smaller models.

7

SOTA	  Conv.	  Maxout	  Network	  
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Under review as a conference paper at ICLR 2015

Figure 5: Here we use linear interpolation to search for local minima. Left) By interpolating between
two different SGD solutions, we show that each solution is a different local minimum within this
1-D subspace. Right) If we interpolate between a random point in space and an SGD solution, we
find no local minima besides the SGD solution, suggesting that local minima are rare.

Figure 6: The linear interpolation experiment for a convolutional maxout network on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Left) At a global scale, the curve looks very well-behaved.
Right) Zoomed in near the initial point, we see there is a shallow barrier that SGD must navigate.

There are of course multiple minima in neural network optimization problems, and the shortest path
between two minima can contain a barrier of higher cost. We can find two different solutions by us-
ing different random seeds for the random number generators used to initialize the weights, generate
dropout masks, and select examples for SGD minibatches. (It is possible that these solutions are not
minima but saddle points that SGD failed to escape) We do not find any local minima within this
subspace other than solution points, and these different solutions appear to correspond to different
choices of how to break the symmetry of the saddle point at the origin, rather than to fundamentally
different solutions of varying quality. See Fig. 5.

4 ADVANCED NETWORKS

Having performed experiments to understand the behavior of neural network optimization on su-
pervised feedforward networks, we now verify that the same behavior occurs for more advanced
networks.

In the case of convolutional networks, we find that there is a single barrier in the objective function,
near where the network is initialized. This may simply correspond to the network being initialized
with too large of random weights. This barrier is reasonably wide but not very tall. See Fig. 6 for
details.

To examine the behavior of SGD on generative models, we experimented with an MP-DBM (Good-
fellow et al., 2013a). This model is useful for our purposes because it gets good performance as
a generative model and as a classifier, and its objective function is easy to evaluate (no MCMC
business). Here we find a secondary local minimum with high error, but a visualization of the SGD
trajectory reveals that SGD passed far enough around the anomaly to avoid having it affect learn-

5

Goodfellow,	  Vinyals,	  &	  Saxe,	  2015	  



Summary	  of	  theory	  

–  	  What	  is	  learned	  when?	  
•  Modes	  of	  the	  SVD	  learned	  in	  time	  1/s	  

– How	  does	  learning	  speed	  scale	  with	  depth?	  
•  Direct	  training	  scales	  exponentially	  

•  Layerwise	  pretraining	  +	  Iine-‐tuning	  scales	  linearly	  
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Outline	  

•  Part	  1:	  Theory	  of	  deep	  linear	  learning	  

•  Part	  2:	  Applications	  	  
– Critical	  period	  plasticity	  
– Perceptual	  learning	  
– Semantic	  cognition	  
– Perceptual	  decisions	  
– Reinforcement	  learning	  
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Intentional	  action	  

•  “Every	  animal	  is,	  in	  some	  degree	  at	  least,	  a	  
perceiver	  and	  a	  behaver.”	  JJ	  Gibson	  

•  Deep	  learning	  models	  are	  largely	  perceptual	  

•  What	  about	  action	  selection?	  



Deep	  learning	  for	  action	  selection?	  

•  Key	  intuitions	  of	  deep	  learning	  approach	  
don’t	  hold	  in	  traditional	  control	  models	  
– No	  compositionality	  
– No	  layered,	  hierarchical	  structure	  
– No	  model	  that	  supports	  distributed	  
representations	  of	  tasks,	  goals,	  …	  

– Discrete	  action	  spaces	  



Markov decision processes

A Markov decision process is one mathematical formulation of an optimal
control problem. It is defined by four objects (X,U, p(y|x, u), l(x, u))

• X is the state space

• U is the action space

• p(y|x, u) are the transition probabilities

• l(x, u) is the immediate cost for being in state x and choosing action u

Our goal is to choose a policy ⇡(x) mapping states to actions that
minimizes

v
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Optimal cost-to-go function

• The optimal cost-to-go function is the expected cumulative cost for
starting at state x and acting optimally thereafter

• It encodes all relevant information about the future

• In particular, acting greedily with respect to the optimal cost-to-go
function is perfectly optimal

Andrew Saxe, Stanford University 15

Dynamic programming solution

• Optimal actions cannot be found by greedy optimization of the
immediate cost

• They must take into account all future cost

• The number of possible futures grows exponentially with time

• To solve the MDP, however, we can use the optimal cost-to-go
function
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that is,
⇡

⇤
(x) = argmin
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Cost-‐to-‐go:	  

OpBmal	  acBon:	  
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Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Problems?	  

•  Discrete	  action	  space	  

•  No	  compositionality	  

•  No	  hierarchy	  

•  Overly	  Ilexible	  cost	  function	  
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Discrete	  action	  space	  

•  Typically,	  at	  each	  time	  step	  choose	  one	  of	  M	  
discrete	  actions	  

•  Curse	  of	  dimensionality	  

•  (all	  possible	  joint	  angles	  for	  shoulder)	  X	  (all	  
possible	  joint	  angles	  for	  elbow)	  X	  …	  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Very	  slow	  



Discrete	  action	  space	  

•  No	  notion	  of	  combining	  subactions	  to	  form	  a	  
complete	  action	  

•  E.g.,	  muscle	  synergies	  

•  Need	  distributed,	  combinatorial	  
representation	  of	  actions	  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Compositional	  tasks	  

•  No	  notion	  of	  combining	  subtasks	  to	  
accomplish	  a	  new	  task	  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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Hierarchy	  

•  No	  notion	  of	  hierarchy	  

•  Options	  are	  hierarchical,	  but	  only	  slightly	  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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OverIlexible	  cost	  functions	  

•  Problem	  formulation	  might	  be	  too	  general	  

•  We	  usually	  take	  energetically	  efIicient	  
action	  

Dynamic programming principle

• The dynamic programming principle is a statement about the cost-to-go
function

• It says that the cost-to-go v(x) for a state x is equal to the
instantaneous cost for the optimal action plus the expected cost-to-go
of the resulting next state

• This gives the famous Bellman equation

v(x) = min

u

�
l(x, u) + E

y⇠p(·|x,u) [v(y)]
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SOTA	  Example:	  Atari	  player	  

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Input	   Deep	  network	   Value	  funcBon	  

AcBon	  A	  
AcBon	  B	  
…	  
AcBon	  F	  

•  Deep	  network	  predicts	  ulBmate	  future	  reward	  accrued	  from	  taking	  each	  
acBon	  

•  10,000,000	  examples,	  160,000,000	  presentaBons	  
•  Works	  extremely	  well	  (ouen	  be>er	  than	  human!)	  

•  Change	  any	  detail	  of	  the	  task	  (shooBng	  bad	  guy	  now	  worth	  2	  points	  not	  1),	  
have	  to	  substanBally	  retrain	  



Wanted:	  	  
Composable	  action	  selection	  unit	  

•  The	  RBM	  of	  action	  selection	  

Lee	  et	  al.,	  2009	  

“Forms	  within	  forms”	   “Acts	  within	  acts”	  

?	  



Wanted:	  	  
Composable	  action	  selection	  unit	  

•  The	  RBM	  of	  action	  selection	  

Lee	  et	  al.,	  2009	  

“Forms	  within	  forms”	   “Acts	  within	  acts”	  

•  Graded,	  non-‐discrete	  acBon	  
space	  

•  Distributed	  representaBon	  of	  
desires/wants	  

•  Blend	  previously	  learned	  
informaBon	  to	  do	  novel	  tasks	  

•  Do	  acBon	  selecBon,	  goal	  
inference,	  and	  social	  causal	  
learning	  

•  Nested	  acts	  within	  acts	  



Wanted:	  	  
Composable	  action	  selection	  unit	  

•  The	  RBM	  of	  action	  selection	  

Lee	  et	  al.,	  2009	  

“Forms	  within	  forms”	   “Acts	  within	  acts”	  

•  Graded,	  non-‐discrete	  ac:on	  
space	  

•  Distributed	  representa:on	  
of	  desires/wants	  

•  Blend	  previously	  learned	  
informa:on	  to	  do	  novel	  
tasks	  

•  Do	  ac:on	  selec:on,	  goal	  
inference,	  and	  social	  causal	  
learning	  

•  Nested	  acts	  within	  acts	  



The	  basic	  model:	  Multitask	  z-‐learner	  

•  Instantiates	  three	  elements	  

Desires	  

Physics	  

AcBon	  



The	  basic	  model:	  Multitask	  z-‐learner	  

•  Given	  any	  two,	  infer	  third	  

Desires	  

Physics	  

AcBon	  



The	  basic	  model:	  Multitask	  z-‐learner	  

•  Reinforcement	  learning	  

Desires	  

Physics	  

AcBon	  



The	  basic	  model:	  Multitask	  z-‐learner	  

•  Goal	  inference/inverse	  reinforcement	  
learning	  

Desires	  

Physics	  

AcBon	  



The	  basic	  model:	  Multitask	  z-‐learner	  

•  Social	  causal	  learning	  

Desires	  

Physics	  

AcBon	  



The	  basic	  model:	  Multitask	  z-‐learner	  

Desires	  

Physics	  

AcBon	  

st
P! →! st+1

utrt



Physics	  (causal	  world	  structure)	  

st
P! →! st+1

One-‐hot	  vector	   One-‐hot	  vector	  

P	  is	  transi5on	  matrix	  	  



Desires/goals/wants	  

rt
Vector	  of:	  

instantaneous	  rewards	  expected	  for	  reaching	  each	  state	  



Action	  

ut
Probability	  distribu5on	  over	  the	  next	  state,	  	  st+1



Action	  

ut
Probability	  distribu5on	  over	  the	  next	  state,	  	  st+1

•  IniBally	  may	  seem	  odd:	  	  
•  if	  you	  specify	  transiBon	  probabiliBes	  directly,	  just	  jump	  to	  highest	  

reward	  state!	  

•  Totally	  graded	  noBon	  of	  acBons.	  Just	  bias	  yourself	  a	  li>le	  more	  toward	  
the	  states	  you	  want,	  and	  away	  from	  those	  you	  don’t.	  



Intentional	  actions:	  	  
Balancing	  reward	  seeking	  with	  effort	  

Main	  innovaBon	  (Todorov,	  2009):	  	  

Achieve	  your	  desires	  

IntenBonal	  acBon	  

Minimize	  exerBon	  



Intentional	  actions:	  	  
Balancing	  reward	  seeking	  with	  effort	  

Main	  innovaBon	  (Todorov,	  2009):	  	  

Maximize	  sum	  of	  rewards	  	  	  	  	  	  	  	  	  	  	  	  	  minimize	  deviaBon	  from	  physics	  

IntenBonal	  acBon	  



Intentional	  actions:	  	  
Balancing	  reward	  seeking	  with	  effort	  

Main	  innovaBon	  (Todorov,	  2009):	  	  

Maximize	  sum	  of	  rewards	  	  	  	  	  	  	  	  	  	  	  	  	  minimize	  

IntenBonal	  acBon	  

KL(ut || Pst )



Optimal	  actions	  

ut
* = argmax

ut
rt
T st

t
∑ −KL(ut || Pst )

Can	  analyBcally	  compute	  this	  



For	  LMDPs,	  opBmal	  acBon	  directly	  computable	  from	  cost-‐to-‐go	  funcBon	  
v(x).	  Define	  exponenBated	  cost-‐to-‐go	  (desireability)	  	  
funcBon:	  
Bellman	  equaBon	  linear	  in	  z:	  
	  
	  
Or	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  where	  zi	  encodes	  desireability	  of	  interior	  
states	  
	  
Crucial	  property:	  SoluBons	  for	  two	  different	  boundary	  reward	  
structures	  linearly	  compose	  (Todorov,	  2009)	  
	  
	  
Mul:task	  Z-‐learning:	  Learn	  about	  a	  set	  of	  boundary	  reward	  structures	  
•  represent	  any	  new	  task	  as	  a	  linear	  combinaBon	  of	  these	  
•  opBmal	  z(x)	  is	  linear	  combinaBon	  of	  component	  tasks’	  zc(x)	  
	  
	  

A change of variables

The equation

v(x) = q(x)� logE
y⇠p(·|x) [exp(�v(y))]

is nonlinear in the unknown function v. To make them linear, we change
variables:

z(x) = exp(�v(x))

Then
z(x) = exp(�q(x))E

y⇠p(·|x) [z(y)]
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zi =Mzi + nb

!qb
1+2 = a !qb

1 + b !qb
2⇒ zi

1+2 = azi
1 + bzi

2

!qb
c, c =1,…,m



Compositionality	  restored!	  

•  Learn	  about	  N	  tasks	  

•  Can	  weight	  these	  N	  tasks	  together	  to	  
perform	  in8inite	  variety	  of	  composite	  tasks	  

•  Examples	  coming…	  



Boundary	  states	  

•  Only	  get	  compositionality	  at	  boundary	  
states	  



Outcome	  revaluation	  in	  sequential	  choice	  

•  Humans	  and	  animals	  can	  rapidly	  adapt	  to	  changing	  
rewards	  in	  sequential	  choices	  (Daw	  et	  al.,	  2011)	  

Fig	  1,	  Doll	  et	  al.,	  2012	  

transition structure and leverage it to evaluate actions
(Figure 1) [22,33!,34,35!,36,12!,37!,38!,39]. The second
involves explicit or implicit counterfactual structure,
where information about rewards not actually received
can be inferred or observed [40–42,13,43,44]. A typical
example is a serial reversal contingency, where a drop in
the value of one option implies an increase in the other’s
value. Purely reinforcement-based model-free RL would
be blind to such structure. Note, however, that while
such tasks go beyond model-free RL, they do not as
directly exercise the key affirmative features of model-
based RL as we have defined it, that is, the computation
of values using a sequential transition model of an
action’s consequences.

From both sorts of studies, the overall sense is that model-
based influences appear ubiquitous more or less wherever
the brain processes reward information. The most
expected of these influences are widespread reports about
model-based value signals in ventromedial prefrontal
cortex (vmPFC) and adjacent orbitofrontal cortex
(OFC), which have previously been identified with
goal-directed behavior using devaluation tasks [45,46].
vmPFC has been proposed to be the human homologue
of rat prelimbic cortex, which is required for goal-directed
behavior [8]. OFC is also implicated in model-based
Pavlovian valuation in rats and goal values in monkeys
[47,48], though understanding this area across species and
methods is plagued by multiple factors [49]. More unex-
pectedly, several reports now indicate that RPE correlates
in the ventral striatum — long thought to be a human
counterpart to the DA response and thus a core com-
ponent of the putative model-free system — also show

model-based influences [33!,34,44]. Even DA neurons,
the same cells that launched the model-free theories due
to their RPE properties [1,2], communicate information
not available to a standard model-free learner [41].

The harder part of this hunt, then, seems to be for neural
correlates of exclusively model-free signals, which are
surprisingly sparse given the prominence of the model-
free DA accounts. The most promising candidate may be
a region of posterior putamen that has been implicated in
extensively trained behavior in a habit study [17] and a
sequential decision task [37!], and may correspond to the
dorsolateral striatal area associated with habits in rodents
[18]. The foundation of both fMRI results, however, was
overtraining (a classic promoter of habits), rather than
whether these areas reflect values learned or updated by
model-free methods. Indeed, value correlates in a nearby
region of putamen have been reported to follow model-
based rather than model-free updating using the compu-
tational definition [34].

A different, promising path for isolating model-based RL
is neural correlates related to the model itself. Repres-
entations of anticipated future states or outcomes —
rather than just their consequences for reward — are what
defines model-based RL. Hippocampal recordings in the
rat have shown evidence of forward model ‘lookahead
sweeps’ to candidate future locations at maze choice
points [35!]. These data fit well with the spatial map-
encoding properties of hippocampus [50], and may permit
striatum to signal value for simulated rather than actually
experienced outcomes [36]. Hippocampus is similarly
implicated in a study that examines learning predictive
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Current Opinion in Neurobiology

Sequential task dissociating model-based from model-free learning. (a) A two-step decision-making task [33!], in which each of two options (A1, A2) at
a start state leads preferentially to one of two subsequent states (A1 to B, A2 to C), where choices (B1 versus B2 or C1 versus C2) are rewarded
stochastically with money. (b and c) Model-free and model-based RL can be distinguished by the pattern of staying versus switching of a top level
choice following bottom level winnings. A model-free learner like TD(1) (b), tends to repeat a rewarded action without regard to whether the reward
occurred after a common transition (blue, like A1 to B) or a rare one (red). A model-based learner (c) evaluates top-level actions using a model of their
likely consequences, so that reward following a rare transition (e.g. A1 to C) actually increases the value of the unchosen option (A2) and thus predicts
switching. Human subjects in [33!] exhibited a mixture of both effects.

www.sciencedirect.com Current Opinion in Neurobiology 2012, 22:1–7

Model-‐free	   “Model-‐based”	  



Multitask	  Z:	  	  
Instant	  outcome	  revaluation	  
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Student Version of MATLAB

•  Behaves	  like	  model-‐based	  methods	  but	  no	  forward	  search	  



Latent	  learning	  in	  spatial	  navigation	  
Auer	  random	  exploraBon	  of	  a	  maze	  environment,	  introducBon	  of	  a	  
reward	  at	  one	  locaBon	  leads	  to	  instant	  goal-‐directed	  behavior	  
towards	  that	  point	  (Tolman,	  1948)	  
	  

•  Covert	  mulBtask	  z-‐learning	  
during	  exploraBon	  enables	  
immediate	  navigaBon	  to	  
rewarded	  locaBons	  when	  
reward	  structure	  becomes	  
known	  



Tower	  of	  Hanoi	  
	  
	  

12 Authors Suppressed Due to Excessive Length

the number of shortest paths within the graph that pass through an index node.
An illustration, from Şimşek (2008), is shown in Figure 3.

(a) (b)

Fig. 3. (a) One state of the Tower of Hanoi problem. Disks are moved one at a
time between posts, with the restriction that a disk may not be placed on top of
a smaller disk. An initial state and goal state define each specific problem. (b)
Representation of the Tower of Hanoi problem as a graph. Nodes correspond to
states (disk configurations). Shades of gray indicate betweenness. Source: Şimşek
(2008).

Şimşek (2008) and Şimşek and Barto (2009) proposed that option discovery
might be fruitfully accomplished by identifying states at local maxima of graph
betweenness (for related ideas, see also Şimşek et al. (2005); Hengst (2002);
Jonsson and Barto (2006); Menache et al. (2002). They presented simulations
showing that an HRL agent designed to select subgoals (and corresponding op-
tions) in this way, was capable of solving complex problems, such as the Tower
of Hanoi problem in Figure 3(a), significantly faster than a non-hierarchical RL
agent.

As part of our research exploring the potential relevance of HRL to neural
computation, we evaluated whether these proposals for subgoal discovery might
relate to procedures used by human learners. The research we have completed so
far focuses on the identification of bottleneck states, as laid out by Şimşek and
Barto (2009). In what follows, we summarize the results of three experiments,
which together support the idea that the notion of bottleneck identification may
be useful in understanding human subtask learning.

Applicable	  to	  goal-‐directed	  acBon	  in	  more	  complex	  domains	  (Diuk	  et	  
al.,	  2013)	  
•  Move	  blocks	  to	  peg	  3;	  smaller	  blocks	  must	  always	  be	  stacked	  on	  

larger	  blocks	  

	  

State	  graph	  with	  cost-‐to-‐go	  	  
and	  opBmal	  trajectory	  

•  Auer	  exploraBon,	  mulBtask	  
Z-‐learning	  is	  capable	  of	  
navigaBng	  to	  arbitrary	  
configuraBons	  



Exploiting	  compositionality:	  
“Navigate	  to	  room	  A	  or	  B”	  

Can	  respond	  flexibly	  to	  a	  
variety	  of	  navigaBon	  tasks	  
•  Find	  food	  or	  water	  

(specific	  saBety	  
experiments)	  

•  Go	  to	  a	  point,	  while	  
avoiding	  door	  #2	  	  

•  Important	  note:	  Not	  
the	  same	  as	  planning	  
through	  arbitrary	  cost	  
map	  because	  of	  
boundary	  state	  
formulaBon.	  



“Place	  medium-‐size	  block	  on	  middle	  
peg”	  

Student Version of MATLAB

Student Version of MATLAB

Instantaneous	  rewards	   Cost-‐to-‐go/trajectory	  



Exploiting	  compositionality	  

ComposiBonality	  enables	  rapid	  response	  to	  novel	  complex	  
queries	  
	  
•  Stack	  small	  block	  on	  large	  block	  
•  Place	  medium	  block	  on	  peg	  1,	  small	  block	  on	  peg	  3	  

	  
•  Models	  highly	  pracBced	  expert	  quite	  familiar	  with	  domain	  
•  Can	  be	  combined	  with	  model-‐based	  search	  



Multitask	  z-‐learning	  	  
for	  action	  selection	  

•  New	  algorithm	  with	  interesting	  properties:	  

–  Instantaneous	  optimal	  adaptation	  to	  new	  terminal	  state	  
rewards	  

–  Relies	  on	  careful	  problem	  formulation	  to	  permit	  
compositionality	  

–  Off-‐policy	  algorithm	  over	  states	  (not	  state/action	  pairs)	  
–  Compatible	  with	  function	  approximation	  

•  Compatible	  with	  model-‐based	  &	  model-‐free	  accounts,	  which	  are	  
tractable	  in	  the	  LMDP	  



Inferring	  goals/wants/desires	  

•  “Dogs	  are	  the	  sort	  of	  agents	  that	  like	  bones”	  
–Tenenbaum	  	  

uration, obstacle shape and agent path. There were four
different goal configurations, displayed in columns 1–4 of
Fig. 3. Only the location of goal C changed across condi-
tions; goals A and B were always in the upper and lower
right corners, respectively. There were two different obsta-
cle shapes: ‘‘Solid” and ‘‘Gap”. Every environment shown
had a wall-like obstacle extending up from the bottom
edge. In the Solid conditions this wall was unbroken, while
in the Gap conditions it had a hole in the middle through
which the agent could pass. The first, fourth, and seventh
rows of Fig. 3 represent the Solid conditions, while the
remaining rows represent the Gap conditions.

Based on the goal configuration and obstacle shape, the
agent’s path was generated by making two choices: first,
which goal (A, B or C) the agent was heading toward, and
second, whether the agent went around the obstacle or
through it. The second choice only applied in the Gap con-
ditions; in the Solid conditions the agent could only move
around the obstacle. In Fig. 3, paths are grouped as ‘‘A”
paths, ‘‘B” paths and ‘‘C” paths, respectively. Because of
C’s varying location, there were eight unique C paths, while
there were just two unique A paths and two unique B paths
because the locations of A and B were fixed. All paths
started from the same point, marked with an ‘‘x” in Fig. 3.

Each condition included a number of trials, which var-
ied the length of the path shown before a judgment was re-
quired. Different conditions queried subjects at different
judgment points, selected at informative points along the
paths. Fig. 2a displays two stimuli with judgment points
of 7 and 11, respectively, as they were plotted for our sub-
jects. In Fig. 3, many of the initial trials are identical, and
only differ in their eventual destination (e.g. corresponding
trials in rows 1 and 4 of Fig. 3 are identical up to judgment
point 10). Subjects were only shown unique stimuli, and
after all redundant conditions were removed, there were
99 stimuli in total, all represented in Fig. 3.

3.1.4. Procedure
Participants were given a cover story to establish

assumptions about our experimental scenarios, including
the assumption of intentional agency, a model of agents’
environments, and a hypothesis space of agents’ goals. Par-

ticipants were told they would be viewing videos of mem-
bers of an intelligent alien species collected by scientists,
and that each video displayed a different alien moving to-
ward a different goal in the environment. They were in-
structed that aliens could not pass through walls, but
that they could pass through gaps in walls. They were told
that after each video, they would rate which goal the alien
was pursuing.

Stimulus trials were ordered with the earliest judgment
points presented first to prevent hysteresis effects from
showing longer trials before their shorter segments. Trials
with the same judgment points were shown in random or-
der. On each trial, the animation paused at a judgment
point, allowing participants to report their online infer-
ences of the agent’s goal at that point. Subjects first chose
which goal they thought was most likely (or if two or more
were equally likely, one of the most likely). After this
choice, subjects were asked to rate the likelihood of the
other goals relative to the most likely goal, on a nine-point
scale from ‘‘Equally likely”, to ‘‘Half as likely”, to ‘‘Extre-
mely unlikely”.

3.1.5. Modeling
Model predictions take the form of probability distribu-

tions over agents’ goals, given by Eq. (1) (specific versions
for M1, M2, M3 and H are provided in the Appendix).

Our models assumed that all goals were visible, given
by the three marked locations in our stimuli. M3 assumed
there were either 0 or 1 subgoals, which could correspond
to any location in the environment. To put people’s goal
inferences on the same scale as model predictions, sub-
jects’ ratings were normalized to sum to 1 for each stimu-
lus, then averaged across all subjects and renormalized to
sum to 1. The within-subjects normalization guaranteed
that all subjects’ ratings were given equal weighting in
the normalized between-subjects average.

3.2. Results

We present several analyses of how accurately M1, M2,
M3 and H predicted people’s online goal inferences from
Experiment 1. We begin with a qualitative analysis, which
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Experiment 1 Experiment 2

Judgment
point:

7

Judgment
point:

11
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point:

7

Judgment
point:

11

(a) (b)

Fig. 2. Stimulus paradigm for Experiments 1 and 2. Each stimulus presented an animation of an agent’s path (marked by a dashed line) ending at a
judgment point: a pause in the animation that allowed participants to report their online inferences of the agent’s goal at that point. (a) Experiment 1:
online goal inference task. Subjects rated how likely each marked goal was at the judgment point. (b) Experiment 2: retrospective goal inference task.
Subjects rated how likely each marked goal was at an earlier judgment point, given by the ‘‘+” along the dashed line.
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Inferring	  goals/wants/desires	  

•  Corresponds	  to	  inverse	  reinforcement	  learning	  	  
	  	  	  (Ng	  &	  Russell,	  2000;	  Dvijotham	  &	  Todorov,	  2010)	  
	  
•  Observe	  P	  and	  a	  trajectory	  resulting	  from	  ut	  	  
•  Infer	  rt	  
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Student Version of MATLAB



Goal	  B	  
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Goal	  C	  

Student Version of MATLAB



Inference	  process	  
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•  Maximize	  Log	  Likelihood	  of	  task	  combinaBon	  weighBng	  



Goal	  inference	  
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Goal	  inference	  

•  From	  actions	  and	  physics,	  can	  infer	  goals	  

•  Lots	  left	  to	  be	  done	  
– Hierarchically	  structured	  actions	  
– Changing	  goals	  
	  



Social	  causal	  learning	  

Waismeyer,	  Meltzoff,	  &	  Gopnik,	  2014;	  Goodman,	  Baker,	  &	  Tenenbaum,	  2009	  	  
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Figure 4: The mean bet (likelihood rating) placed on each of the five possible causes of C. The Social condition (a) confirms the social-
causal model predictions (Fig. 2a). The Prior condition (c) confirms predictions of the social-causal model with strong prior (Fig. 2c). The
Self condition (b) reflects a reversion to the causal-only model (Fig. 2b), as expected, but seems to be mixed with residual social-causal
inferences—see Footnote 4.

causal knowledge to inform inferences, even when social con-
text information was available. To see whether this is a graded
integration of information sources, as predicted by the social-
causal model (Fig. 3), or an all-or-nothing gating effect of
prior knowledge, we exploit natural variation among the sce-
narios. The relationship between the plausibility rating of a
participant and their bet on “A and B” in the corresponding
scenario, can be used to further examine the effect of prior
knowledge on inferences. Pooling Social and Prior scenar-
ios, prior plausibility ratings explain 43% of the variance in
bets (r=0.66, p<0.001), as shown in Fig. 5.5 Within con-
ditions, causal structure inferences remain significantly cor-
related with the variation in plausibility judgments (r=0.46,
p<0.01 within the Social condition, r=0.56, p<0.001 within
the Prior condition). This result indicates that participants
continuously integrate prior causal knowledge with social
context information, rather than using prior causal knowledge
as a gate on social inference.

Over-imitation
The results of the previous sections show that generic infer-
ence abilities, combined with an understanding of causality
and agency, can result in rapid learning of causal knowledge.
Yet where there is rapid learning there is the possibility of go-
ing rapidly astray—are there situations in which social-causal
inference might lead to incorrect conclusions?

A number of authors have reported that children seem to
over-imitate adults, copying even actions which are, to adults,
clearly superfluous to bringing about an effect (Horner &
Whiten, 2005; Lyons et al., 2007; Meltzoff, 1995). For in-
stance Horner and Whiten (2005) present a “puzzle box” to
children and demonstrate a series of actions which culminate
in retrieving a prize from within the box. The box is trans-
parent, and some of these actions are plausibly related to the

5The correlation is higher for group means (r=0.85); we are,
however, primarily interested in the relationship within individual
participants.
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Figure 5: The mean bet (likelihood rating) of participants on “A
and B” according to their plausibility rating for B as a cause of C.
The graded effect of prior knowledge confirms the model predictions
(Fig. 3).

outcome, but one is not (for example, touching a rod to the top
of the box). When invited to retrieve the prize, children per-
form all the actions, including the superfluous one. Chimps
in a similar experiment did not over-imitate, leaving out the
implausible action. Lyons et al. (2007) investigated a num-
ber of possible explanations for over-imitation in children but
found it to be remarkably robust; the only manipulation they
report that reversed children’s over-imitation was removal of
physical contact between cause and (potential) effect (Lyons
et al., 2007, Expt. 2b). On the basis of these findings Lyons et
al. (2007) suggest that over-imitation reflects an “automatic
causal encoding” mechanism, with “boundary conditions” to
switch off this encoding (such as physical contact).

Our modeling results indicate that a separate principle
(such as automatic causal encoding) needn’t be invoked to
explain children’s over-imitation. If children’s prior beliefs
are weaker than adults’ (and, like adults, contact-causality is

2763

experience handling the objects to rule out trial-and-
error learning.

Two objects served as potential causes of a desirable
event. The desirable event was a marble dispensing from
a machine located 30 cm away from the objects (Fig-
ure 1). After observing this display, participants were
given a chance to design an intervention to obtain the
marble based on what they had observed.

Method

Participants

The participants were 32 24-month-olds, all within
!14 days of their birthday (M = 24.10 months, SD =

6.0 days). An equal number of males and females were
tested. An additional four toddlers began testing but
were excluded due to sound sensitivity (one), and
unwillingness to participate (three). Participants were
recruited by telephone from the university’s computer-
ized participant pool. Pre-established criteria for admis-
sion into the study were that the children be full-term,
normal birth weight, and have no known developmental
concerns. The sample was primarily middle- to upper-
middle-class with 78% White, 6% Asian, 16% Other, and
9% of Hispanic ethnicity according to parental report.

Stimuli

Two sets of wooden objects were used which differed
from each other in both shape and color. The set used
during the familiarization phase consisted of a green egg
(6 cm 9 4 cm) and a yellow square (7 cm 9 7 cm). The
set used during the test trial consisted of a red cylinder
(7.5 cm 9 3.25 cm) and a blue hemisphere (4.75 cm 9

9.75 cm). When placed on the table, the objects were
arranged on a tray with a box in the middle and the two

objects on either side (Figure 1A). The marble dispenser
was situated to the toddler’s right near the edge of the
table. When either object was placed on the box, it
always caused the box to illuminate and emit sound
(Figure 1B), but on ‘effective’ demonstrations only, a
marble was immediately dispensed from the marble
machine (the ‘effect’), which was highly desirable for the
children.

Procedure

Toddlers were tested in the laboratory while seated on
their parent’s lap at a black table (72 cm 9 120 cm). All
responses were video-recorded. The objects were out of
reach of the child, approximately 15 cm from the adult’s
side of the table. The experimental protocol consisted of
a short familiarization phase and then the test trial. The
test trial consisted of children observing probabilistic
events (the ‘stimulus-presentation period’) followed by a
30-s period when the test objects were presented to the
children to manipulate (‘response period’).

Throughout the experiment, the adult used everyday
social-interactive cues such as infant-directed speech and
mutual gaze with the child (Csibra & Gergely, 2011), but
crucially, the experimenter did not provide any causal
linguistic description of the events. For example, the
adult said, ‘Let’s watch’ but did not narrate the events
using causal language such as ‘I’m using the block to
make it go’ or ‘It’s my turn to make this work.’ This
safeguard was followed because past work suggests that
causal descriptions in particular can change children’s
performance on causal learning tasks (e.g. Bonawitz
et al., 2010). The experimental protocol thus incorpo-
rated attention-getting, pedagogical cues (Csibra &
Gergely, 2011), see below for quantification, but
excluded causal linguistic descriptions of the displays.

Familiarization phase. Because the procedure and appa-
ratus were novel, toddlers were first familiarized to the
general nature of the game. During familiarization, the
warm-up objects (which were not the same ones used
during the test trial) were deterministically effective in
producing the effect: When the experimenter placed one
object on the box, the desired effect always occurred (4
out of 4 times; 100% effective); when the experimenter
placed the other object on the same box, the desired
effect never occurred (0 out of 4 times; 0% effective).
Following this, all toddlers were given a choice to place
one of the two objects on the box and then presented
with the second object to place on the box. All 32
participants did so, and thus all of them placed both
objects on the box an equal number of times. This
familiarization phase showed children that their own

A B

Figure 1 A schematic display showing the causal chain of
events used in Experiments 1 and 2. (A) Two colored, wooden
objects depicted by the red cylinder (R) and the blue
hemisphere (B), serve as potential causes of a chain of events
that leads to the activation of a marble dispenser (MD). (B)
When placed on a box, the box illuminates (orange highlight)
and emits a sound (musical notes). This event is immediately
followed by the marble (black dot) dispensing from the marble
dispenser. A 30-cm gap separated the box and the marble
dispenser. (Figure is not drawn to scale, see text for
measurements).
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experience handling the objects to rule out trial-and-
error learning.

Two objects served as potential causes of a desirable
event. The desirable event was a marble dispensing from
a machine located 30 cm away from the objects (Fig-
ure 1). After observing this display, participants were
given a chance to design an intervention to obtain the
marble based on what they had observed.

Method

Participants

The participants were 32 24-month-olds, all within
!14 days of their birthday (M = 24.10 months, SD =

6.0 days). An equal number of males and females were
tested. An additional four toddlers began testing but
were excluded due to sound sensitivity (one), and
unwillingness to participate (three). Participants were
recruited by telephone from the university’s computer-
ized participant pool. Pre-established criteria for admis-
sion into the study were that the children be full-term,
normal birth weight, and have no known developmental
concerns. The sample was primarily middle- to upper-
middle-class with 78% White, 6% Asian, 16% Other, and
9% of Hispanic ethnicity according to parental report.

Stimuli

Two sets of wooden objects were used which differed
from each other in both shape and color. The set used
during the familiarization phase consisted of a green egg
(6 cm 9 4 cm) and a yellow square (7 cm 9 7 cm). The
set used during the test trial consisted of a red cylinder
(7.5 cm 9 3.25 cm) and a blue hemisphere (4.75 cm 9

9.75 cm). When placed on the table, the objects were
arranged on a tray with a box in the middle and the two

objects on either side (Figure 1A). The marble dispenser
was situated to the toddler’s right near the edge of the
table. When either object was placed on the box, it
always caused the box to illuminate and emit sound
(Figure 1B), but on ‘effective’ demonstrations only, a
marble was immediately dispensed from the marble
machine (the ‘effect’), which was highly desirable for the
children.

Procedure

Toddlers were tested in the laboratory while seated on
their parent’s lap at a black table (72 cm 9 120 cm). All
responses were video-recorded. The objects were out of
reach of the child, approximately 15 cm from the adult’s
side of the table. The experimental protocol consisted of
a short familiarization phase and then the test trial. The
test trial consisted of children observing probabilistic
events (the ‘stimulus-presentation period’) followed by a
30-s period when the test objects were presented to the
children to manipulate (‘response period’).

Throughout the experiment, the adult used everyday
social-interactive cues such as infant-directed speech and
mutual gaze with the child (Csibra & Gergely, 2011), but
crucially, the experimenter did not provide any causal
linguistic description of the events. For example, the
adult said, ‘Let’s watch’ but did not narrate the events
using causal language such as ‘I’m using the block to
make it go’ or ‘It’s my turn to make this work.’ This
safeguard was followed because past work suggests that
causal descriptions in particular can change children’s
performance on causal learning tasks (e.g. Bonawitz
et al., 2010). The experimental protocol thus incorpo-
rated attention-getting, pedagogical cues (Csibra &
Gergely, 2011), see below for quantification, but
excluded causal linguistic descriptions of the displays.

Familiarization phase. Because the procedure and appa-
ratus were novel, toddlers were first familiarized to the
general nature of the game. During familiarization, the
warm-up objects (which were not the same ones used
during the test trial) were deterministically effective in
producing the effect: When the experimenter placed one
object on the box, the desired effect always occurred (4
out of 4 times; 100% effective); when the experimenter
placed the other object on the same box, the desired
effect never occurred (0 out of 4 times; 0% effective).
Following this, all toddlers were given a choice to place
one of the two objects on the box and then presented
with the second object to place on the box. All 32
participants did so, and thus all of them placed both
objects on the box an equal number of times. This
familiarization phase showed children that their own

A B

Figure 1 A schematic display showing the causal chain of
events used in Experiments 1 and 2. (A) Two colored, wooden
objects depicted by the red cylinder (R) and the blue
hemisphere (B), serve as potential causes of a chain of events
that leads to the activation of a marble dispenser (MD). (B)
When placed on a box, the box illuminates (orange highlight)
and emits a sound (musical notes). This event is immediately
followed by the marble (black dot) dispensing from the marble
dispenser. A 30-cm gap separated the box and the marble
dispenser. (Figure is not drawn to scale, see text for
measurements).
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Social	  causal	  learning	  

•  Corresponds	  to	  a	  novel	  problem	  
	  
•  Observe	  desires	  rt	  and	  a	  trajectory	  resulting	  from	  
ut	  	  

•  Infer	  P	  



Problem	  formulation	  
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Problem	  formulation	  
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“I	  really	  want	  C!”	  



“I	  really	  want	  C”	  
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“Don’t	  care	  whether	  I	  get	  C	  or	  D”	  
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Social	  causal	  learning	  

•  Novel	  learning	  setting	  not	  studied	  in	  
engineering	  

•  From	  desires	  and	  actions,	  infer	  physics/
causal	  structure	  



Conclusion	  

•  Intentional	  action	  

Desires	  

Physics	  

AcBon	  



Conclusion	  

•  Get	  actions	  from	  physics	  and	  desires	  

•  Get	  desires	  from	  actions	  and	  physics	  

•  Get	  physics	  from	  actions	  and	  desires	  



Challenges	  

•  Recursive	  reasoning	  

•  Hierarchy	  

•  Beliefs	  



The	  brain	  is	  not	  a	  	  
deep	  linear	  network	  

•  Simple	  models	  help	  hone	  intuitions	  and	  are	  an	  important	  
precursor	  to	  treating	  more	  complex	  cases	  

•  What	  are	  deep	  linear	  networks	  good	  for?	  
–  Learning	  dynamics	  
–  SpeciIic	  consequences	  of	  depth	  
–  Conceptual	  underpinnings	  

•  What	  aren’t	  they	  good	  for?	  
–  Understanding	  increased	  representational	  power	  due	  to	  
nonlinearities	  

•  Must	  check	  behavior	  in	  deep	  nonlinear	  nets,	  will	  not	  always	  
coincide	  with	  linear	  case	  

Andrew	  Saxe	   153	  



Conclusion	  
•  Learning	  in	  a	  deep,	  chain-‐like	  structure	  is	  hard	  

•  Overcoming	  this	  challenge	  may	  shape	  how	  the	  
brain	  learns	  in	  a	  variety	  of	  contexts	  

•  Explains	  progressive	  stage-‐like	  differentiation	  
in	  semantic	  learning	  

•  Spans	  levels	  of	  analysis:	  single	  neurons	  to	  
aspects	  of	  semantic	  cognition	  

Andrew	  Saxe	   154	  



Extensions	  

Theory	  of	  
deep	  
linear	  

networks	  

Perceptual	  
learning	  

SemanBc	  
cogniBon	  

Decision	  
making	  

Reinforcement	  
learning	  

Sparse	  	  
Parts-‐based	  

representaBons	  

Experience	  
dependent	  
plasBcity	  
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Thank	  you!	  

Andrew	  Ng	  

Jay	  McClelland	   Christoph	  Schreiner	  

Surya	  Ganguli	  
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•  Andrew	  Maas	  
•  Quoc	  Le	  
•  Ian	  Goodfellow	  
•  Chris	  Baldassano	  
•  Jeremy	  Glick	  
•  Juan	  Gao	  
	  

•  Cynthia	  Henderson	  
•  Daniel	  Hawthorne	  
•  Dave	  Jackson	  
•  Bryan	  Seybold	  
•  Craig	  Atencio	  
•  Nick	  Steinmetz	  
•  Logan	  Grosenick	  



Questions?	  
Warm	  thanks	  to	  
	  
•  Rachel	  Lee	  
•  Maneesh	  Bhand	  
•  Ritvik	  Mudur	  
•  Bipin	  Suresh	  
•  Koh	  Pang	  Wei	  
•  Zhenghao	  Chen	  

•  Members	  of	  McClelland,	  Ng,	  Schreiner,	  &	  Ganguli	  labs	  
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•  Andrew	  Maas	  
•  Quoc	  Le	  
•  Ian	  Goodfellow	  
•  Chris	  Baldassano	  
•  Jeremy	  Glick	  
•  Juan	  Gao	  
	  

•  Cynthia	  Henderson	  
•  Daniel	  Hawthorne	  
•  Dave	  Jackson	  
•  Bryan	  Seybold	  
•  Craig	  Atencio	  
•  Nick	  Steinmetz	  
•  Logan	  Grosenick	  



Biological	  plausibility	  
•  Gradient	  descent	  in	  the	  brain?	  
•  Computational	  level	  hypothesis	  
	  
•  Backpropagation:	  one	  algorithm	  among	  many	  
to	  compute	  gradient	  

•  Other	  candidate	  algorithms:	  	  
– Generalized	  recirculation	  algorithm	  
– Attention-‐gated	  reinforcement	  learning	  (AGREL)	  
algorithm	  	  

	  

ΔW = −λ
∂E
∂W



Dynamic	  Isometry	  in	  nonlinear	  nets	  

Suggests	  initialization	  for	  nonlinear	  nets	  
•  near-‐isometry	  on	  subspace	  of	  large	  dimension	  
•  Singular	  values	  of	  end-‐to-‐end	  Jacobian	  
	  	  	  	  	  concentrated	  around	  1.	  	  
Scale	  orthogonal	  matrices	  by	  gain	  g	  to	  counteract	  contractive	  
nonlinearity	  
	  
	  
	  
	  
Just	  beyond	  edge	  of	  chaos	  (g>1)	  may	  be	  good	  initialization	  
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have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the
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•  g>1	  speeds	  up	  30	  layer	  nonlinear	  nets	  

•  Dynamic	  isometry	  reduces	  test	  error	  by	  1.4%	  pts	  

Dynamic	  Isometry	  Initialization	  
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MNIST	  ClassificaBon	  error,	  epoch	  1500	   Train	  	  
Error	  (%)	  

Test	  	  
Error	  (%)	  

Glorot	  (g=1,	  random)	   2.3	   3.4	  
g=1.1,	  random	   1.5	   3.0	  
g=1,	  orthogonal	   2.8	   3.5	  
Dynamic	  Isometry	  (g=1.1,	  orthogonal)	   0.095	   2.1	  

•  Tanh	  network,	  soumax	  output,	  500	  units/layer	  
•  No	  regularizaBon	  (weight	  decay,	  sparsity,	  dropout,	  etc)	  



Fast	  Training	  from	  Large	  Gain	  
Initializations	  

•  Deep	  networks	  +	  large	  gain	  factor	  g	  train	  exceptionally	  quickly	  	  
•  But	  large	  g	  incurs	  heavy	  cost	  in	  generalization	  performance	  

	  
•  Suggests	  small	  initial	  weights	  regularize	  towards	  smoother	  functions	  	  
•  Training	  difIiculty	  arises	  from	  saddle	  points,	  not	  local	  minima	  
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