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Long-Lived Agents 

• Agents deployed in some environment over a long 

duration 

– Multiple tasks 

– Changing environment 

• Continuously learn and adapt 

– Growing task, behaviour sets 

• How to maintain knowledge? 

– Behaviour transfer 

– Generalisation 
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Transfer Learning 

1. How can an agent generalise from previous 

behaviours to solve new tasks in the same 

environment quicker and with less risk? 

1. Accelerate policy learning 

2. Model of external agent behaviour 

 

2. Given a set of previously learnt behaviours, what is the 

optimal way to select the best one to be re-used in a 

new environment or interaction? 

 



Chapter 0: 
A Brief Intro to Reinforcement 

Learning 
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What is reinforcement learning? 

• How to learn behaviours under stochasticity and uncertainty? 

– Unsupervised? 

– Supervised? 

– Something else entirely… 
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Operating in an environment 

• Rewards as a weak, delayed learning signal 

– Goal-directed learning 

• Learn from repeated interaction 

• Learn to map situations to actions so as to maximise 

numerical reward (which may be delayed) 

Agent 

Environment 

action 𝑎𝑡 state 𝑠𝑡+1 reward 𝑟𝑡 
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Markov Decision Processes (MDPs) 

• Model a decision problem 

• 𝑀 = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾  

• Observable 

• Markov 

• Policy 𝜋 
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Examples 
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Value functions 

• Value of a state: 

– Expected return starting from that state and following a 
particular policy 

– 𝑉𝜋 𝑠 = 𝐸𝜋 𝑅𝑡 𝑠𝑡 = 𝑠} 

= 𝐸𝜋  𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

 

• Value of an action in a state: 

– Expected return of starting in that state, taking that action, 
and then following a particular policy 

– 𝑄𝜋 𝑠, 𝑎 = 𝐸𝜋 𝑅𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} 

= 𝐸𝜋  𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

∞

𝑘=0

 

 

𝑠 

𝜋 

𝑠 

𝑎 
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Why value functions? 

• Optimal value functions: 

– 𝑉∗ 𝑠 = max
𝜋

𝑉𝜋(𝑠) 

– 𝑄∗ 𝑠, 𝑎 = max
𝜋

𝑄𝜋(𝑠, 𝑎) 

– These are the value functions given by the optimal policy 𝜋∗ 

• Any policy that is greedy w.r.t 𝑉∗ (or 𝑄∗) is optimal 

– So, 𝜋∗ 𝑠 = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) 
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Example 

• Random 

policy: 

 

 

• Optimal: 
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RL Algorithms 

• RL learning is trial-and-error learning to find a good 

policy from experience 

• So as not to solve a large system of value function 

equations 

 

 

– Which aren’t even known! 

• Exploration vs exploitation 

• Model free vs model based algorithms 
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Q-Learning 

• Initialise 𝑄(𝑠, 𝑎) arbitrarily 

• Repeat (for each episode): 

– Initialise 𝑠 

– Repeat (for each step of episode): 
• Choose 𝑎 from 𝑠 using 𝜖-greedy policy from 𝑄 

– 𝑎 ←  
argmax

𝑎
𝑄(𝑠, 𝑎) 𝑤. 𝑝. 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑤. 𝑝. 1 − 𝜖
 

• Take action 𝑎, observe 𝑟, 𝑠′ 

• Update 𝑄 

– 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)  

• 𝑠 ← 𝑠′ 

– Until 𝑠 is terminal  

exploit 

explore 

learn 



Chapter 1: 
Safe Behaviour Generalisation 

(Action Priors) 
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Learning Domain Knowledge 

• Agent performing multiple tasks in the same 

environment  

– Improve over time, across tasks 

• Lifelong learning: what to learn over an agent’s 

lifetime? 

– Task independent regularities (structure) in the 
domain 

– Structure: general “common sense” behaviours 
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An Intuition 

• Although many actions may be possible in some 

context, only a small number are typically 

useful 
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The Benefits of Multiple Tasks 

• Set of RL policies 

– Each is specific knowledge 

• Together: tease out the general 

domain knowledge 𝜋𝑖  

Task knowledge 

Domain 
knowledge 

New task 



18 

Learning Domain Knowledge 

• Tasks are drawn from a domain 

– Differ in goal: reward R 

– (In general: states S,  transitions T) 

• Learn model of behavioural invariances across domain 

– Task independent 

– From optimal policies 

• Model: Context based distributions over action set 

– Action “usefulness” = reasonable behaviour choices 

– Condition on state (observations 𝜑(𝑠)) 
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An Illustration 
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A Model of Domain Knowledge 

• Action priors 𝜃𝜑 𝑠 𝐴   [Rosman and Ramamoorthy, 2012, 2015] 

– Dirichlet distribution over 𝐴 

– Conditioned on 𝜑(𝑠) 

 

• 𝜃𝜑 𝑠 𝐴  ~ 𝐷𝑖𝑟(𝛼𝜑 𝑠 𝐴 )  

– Parameters 𝛼𝜑 𝑠 𝐴  
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A Model of Domain Knowledge 

 

• Notion of “action usefulness” 

• Formally:  

– For each policy π, define a weight w(π)  

– Action utility under a policy: 

– 𝑈𝜑 𝑠
𝜋 𝑎 = 𝛿(𝜋 𝜑 𝑠 , 𝑎 ,max

𝑎′∈𝐴
𝜋(𝜑 𝑠 , 𝑎′)) 

 

– Action utility under a policy set:  

– 𝛼𝜑 𝑠 𝑎 =   𝑤(𝜋)𝜋∈Π 𝑈𝜑 𝑠
𝜋 𝑎 + 𝛼𝜑 𝑠

0 (𝑎) 

Utility = 1 iff action optimal 

Hyperprior 

Measure of confidence/skill 

Weighted sum of 
action utilities 
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A Model of Domain Knowledge 

• Online update:  

– Counts for each 𝜑(𝑠) 

– For each policy π, define a weight w(π) 

 

– 𝛼𝜑
0 𝑎 ← 𝛼𝜑 𝑎 ,  ∀𝜑, 𝑎 

– 𝛼𝜑 𝑠
𝑡+1 𝑎 ←  

𝛼𝜑 𝑠
𝑡 𝑎 + 𝑤 𝜋𝑡 ,     𝜋𝑡 𝑠, 𝑎 =  max

𝑎′
𝜋𝑡 𝑠, 𝑎′

 𝛼𝜑 𝑠
𝑡 (𝑎),       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Initialise to some hyperprior 

Given a new policy 𝜋𝑡, update 
counts of optimal actions 

Measure of confidence/skill 
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Example Priors 
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How to Use? Guided Exploration 

• Action selection: 

– 𝜃𝜑 𝑠 𝐴  ~ 𝐷𝑖𝑟 𝛼𝜑 𝑠  

– 𝑎 ~ 𝜃𝜑 𝑠 (𝐴) 

 

• Exploration in Q-learning (a twist on 𝜖-greedy): 

– 𝑎 ←  
arg max

𝑎
𝑄(𝑠, 𝑎) ,  𝑤. 𝑝.    1 − 𝜖

 𝑎 ∈ 𝐴 ,                𝑤. 𝑝.    𝜖𝜃𝜑 𝑠 (𝑎)
 

Let action prior bias exploration 

Draw distributions from a Dirichlet 

Note: standard Q-learning uses uniform priors 
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Example: The Factory Domain 

• The factory domain 

– Extended navigation 
domain 

– Task: procure and assemble 
a list of items 

– Assembly/procurement 
points, express route 

– Actions: 
𝑁, 𝐸, 𝑆,𝑊, 𝑃𝑟𝑜𝑐𝑢𝑟𝑒, 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 
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The Effect of Priors 
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• Assemble 1 item • Assemble 4 items 

Learning Across Multiple Tasks 
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The Factory Domain 2.0 

• The extended factory domain 

– Each instance different 
• Assembly, procurement regions 

• Semi-random structure 

• States are not useful for transfer! 
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Results: Effect of Different Features 

• Different feature sets in 

action prior 

𝜑1: current cell, item status 

𝜑2: cells N, S, E, W 

𝜑3:  𝜑1 ∪ 𝜑2  

𝜑4:  𝜑3 ∪ {NE, NW, SE, SW} 

• Trade-off: 

– Under- vs over- 
representation 

– Feature learning                  
[Rosman 2014] 
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An Application: Autonomous Caregivers 

Goal 
Autonomous agent: enable novice agents to safely learn in a self-

directed manner 

[Rosman, Hayes, Scassellati, 2015] 
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Caregivers Perform Risk Mitigation 

Approach 

Adapt the environment to promote safety 
– Without sacrificing quality of learning experience 

– Assist through indirect communication and manipulation 
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Model of Novice Behaviour 

• Novice modelled as an MDP 

– Environment states 𝑠 ∈ 𝑆 

– Actions 𝑎 ∈ 𝐴 

– Environment dynamics 𝑇(𝑠, 𝑎, 𝑠’) 

– Rewards 𝑅(𝑠, 𝑎) 

– Policy 𝜋(𝑠, 𝑎) 

R 

s s’ 

a 

T 

𝜋 
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Caregivers Are A Shaping Mechanism! 

• Corrective signals are provided by caregivers 

– Informed by an internal model of reasonable behaviour to 
assess how risk prone a novice agent is 

– Provided selectively (when necessary) 

– Provided with foresight (before harm is inevitable) 
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A Model of Safety 

• Goal: Determine if novice is behaving safely 

– Estimate policy similarities between novice and expert 

• Current trajectory: 𝜏 = 𝑠𝑡+1, 𝑎𝑡 , 𝑠𝑡 , 𝑎𝑡−1, 𝑠𝑡−1, … 

• Safe behaviour: expert policies  𝜃𝑠 𝐴  

 

• 𝑃 𝑠𝑎𝑓𝑒 𝜏) =  
𝑃 𝜏 𝑠𝑎𝑓𝑒 𝑃(𝑠𝑎𝑓𝑒)

𝑃 𝜏
 

 

• 𝑃 𝜏 𝑠𝑎𝑓𝑒 =   𝜃𝑠𝑘(𝑎
𝑘)𝑡

𝑘=1  

Prior prob. of 
behaving safely 

Normalisation factor 

Safe (reasonable) 
transition probs. 
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A Model of Danger 

• Goal: Estimate potential future dangers 

– Expected environmental harm of likely future actions 

• Evaluate expectation for each potential source of harm 𝑜: 

 
𝑃 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝜏) × 𝑑𝑜 

 
= (1 − 𝑃 𝑠𝑎𝑓𝑒 𝜏)) × 𝑃(𝑟𝑒𝑎𝑐ℎ𝑜  𝜏 × 𝑑𝑜 

Prob. of behaving 
safely 

Extrinsic damage caused 
by collision with 𝑜 

Prob. of reaching 𝑜 
∝ distance to 𝑜 from 
current position 
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Toybox World 

• Exploring to reach toy boxes [ICDL 2015] 

• Hazards: 

– Major damage: candles, stairs 

– Minor damage: tables 

• Novice agent: 

– 𝜖-greedy 

– ‘Play’ for 200 time steps 

• Caregiver agent: 

– Trained on 1,000 expert steps 

– Moves 3x faster than novice 

• Interventions: 

– Move candle between tables 

– Block stairwell 
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Results: Reducing Harm 
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Results: Exploration Time 
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Results: Environment Coverage 
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Conclusion 

• Action priors 

– Behavioural domain invariances 

– Task independent 

– “Common sense” knowledge 

• Improve learning speed 

– Use as exploration bias in RL 

• Identify safe/normal behaviour 

• General paradigm for multi-task decision making agents 

– If learning multiple tasks in the same domain, 
learn from previous tasks! 



Chapter 2: 
Efficient Skill Selection 
(Bayesian Policy Reuse) 
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Responding Online to New Situations 

• Engaged in a task 

– Not enough time to learn a policy 

• Previous experience of tasks 

– Choose the best policy in a sequence of 
interactions 

– Based on some latent variable 
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The Policy Reuse Problem 

• Given: 

– Exposure to previous task instances 

– A policy library trained on those tasks 

• Experience a new task 

• Goal: 

– Select policies for new task to minimise total 
regret 

• Assume: limited task duration 

– Cannot learn from scratch 
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Insight 

(unknown embedding) 
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Bayesian Policy Reuse Overview 

 𝜋  𝜋  𝜋  𝜋  𝜋  𝜋  𝜋  𝜋 

? 
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Ingredient 1: Performance 

• Performance 𝑈:  

– Returns achieved by a policy on a task 

• Performance models: 

– 𝑃(𝑈|𝜏, 𝜋) 

– Maintain for each experienced task and policy 

• Use to estimate performance of a policy on an unknown 

task 
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Ingredient 2: Signals 

• Signals 𝜎: information correlated with task performance, 

provided during task execution 

– E.g. rewards, (partial) states 

• Signal/observation models: 

– 𝑃(𝜎|𝜏, 𝜋) 

– Maintain for each task and policy 

• Use as feedback signal for identifying task 
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Belief Models 

• Maintain belief over set of task instances 𝜏 

• Update 

– Based on signals after playing a policy 

– Over ALL known tasks! 

– Notion of task similarity 

Signal model 
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Bayesian Policy Reuse 

[Rosman, Hawasly, Ramamoorthy, MLJ, to appear 2015] 

1. Select policy 

2. Apply policy 

3. Observe signal 

4. Update belief 
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Policy Selection 

• Selection heuristics (based on Bayesian optimisation): 

 

• Probability of Improvement (PI): 

 

 

 

• Expected Improvement (EI): 
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Illustrative Example – The Golf Range 

Ground truth: 

https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0CAcQjRxqFQoTCKSx_e-vn8cCFQO3FAodU7MHAg&url=http://www.dreamstime.com/royalty-free-stock-photo-robot-club-playing-golf-image16301495&ei=LAzJVaTrE4PuUtPmnhA&bvm=bv.99804247,d.d24&psig=AFQjCNFlNeR61YmhyFC1x9wBiUMEl8kI9g&ust=1439325610397552
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Illustrative Example – Signal Models 
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Results on New Task 
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Surveillance Domain 

• Watching for intruders, from hills 

– Connected visibility 

• 68 tasks 
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Rapid Identification 

Bandits (with 
cheating) 

Bayesian 
optimisation 
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Library Size-Episodes-Regret Trade-off 
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Non-stationarity and Adversity 

• Changing opponents:  

– Keep all beliefs non-
zero 

• New strategies: 

– Unlikely reward 
sequence 

– Enable learning 

[Hernandez-Leal, Taylor, Rosman, submitted] 
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Multi-agents: Tracking Changes 
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Summary 

• Bayesian Policy Reuse: general framework for rapid 

policy selection 

– Maintain beliefs over tasks 

– Update with observation models 

– Select according to performance models 

• Interact efficiently with unknown tasks and agents 
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Future Work 

• Extensions: 

– Continuous action/task sets 
• Distributions over parameter space 

– Different decision making paradigms 
• Classical planning 

• POMDPs 

• MCTS 
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Future Work 

• Structure in task space? 

– Non-parametric: 

• Clustering MDPs 

– Parametric: 

• Hidden parameter 
MDPs 

– Compositionality and 
hierarchy of 
behaviours 

[Mahmud, Hawasly, Rosman, Ramamoorthy, under review] 
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Action Priors: Feature Entropy 

current 
up left right down 

U L R D 

UL U UR L C R DL D DR it 

items 

C it 

Effect of removing a feature: 
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Adaptive Feature Sets 

• Features selected as a function of number of tasks 

• Initial features: 10 (values: 49 × 3) 

• Final features: 4 (values: 44) 
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Results: Online Feature Selection 

• Effect of priors: episodes 1 and convergence 


