On the Impact of Prior Knowledge on Autonomous Agents

Benjamin Rosman

Mobile Intelligent Autonomous Systems Council for Scientific and Industrial Research

&
School of Computer Science and Applied Maths
University of the Witwatersrand

South Africa

Sir

our future through science

8 September 2015

Long-Lived Agents

- Agents deployed in some environment over a long duration
 - Multiple tasks
 - Changing environment
- Continuously learn and adapt
 - Growing task, behaviour sets
- How to maintain knowledge?
 - Behaviour transfer
 - Generalisation

Transfer Learning

- 1. How can an agent **generalise from previous behaviours** to solve new tasks in the same environment quicker and with less risk?
 - 1. Accelerate policy learning
 - 2. Model of external agent behaviour
- 2. Given a set of previously learnt behaviours, what is the optimal way to **select the best one to be re-used** in a new environment or interaction?

Chapter 0: A Brief Intro to Reinforcement Learning

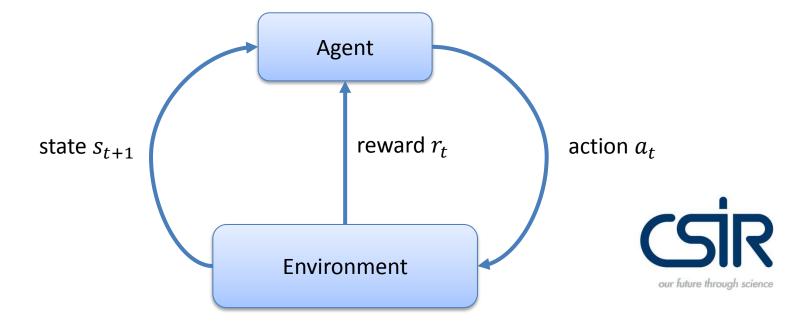
our future through science

What is reinforcement learning?

- How to learn behaviours under stochasticity and uncertainty?
 - Unsupervised?
 - Supervised?
 - Something else entirely...

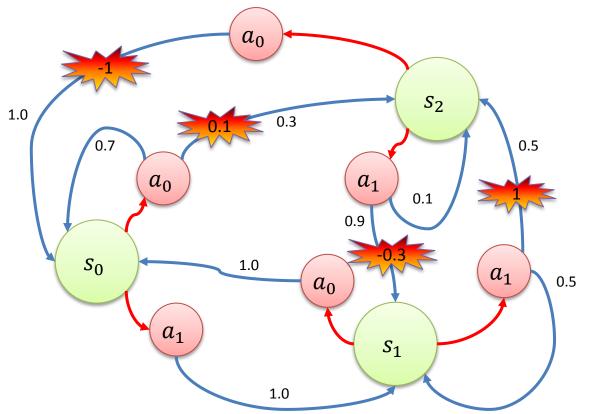
Operating in an environment

- Rewards as a weak, delayed learning signal
 - Goal-directed learning
- Learn from repeated interaction
- Learn to map situations to actions so as to maximise numerical reward (which may be delayed)



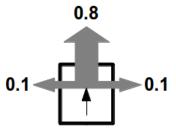
Markov Decision Processes (MDPs)

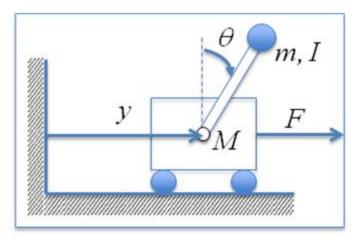
- Model a decision problem
 Markov
- $M = \langle S, A, T, R, \gamma \rangle$ Policy π
- Observable



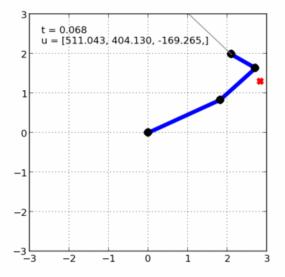
Examples

			Wall	+1
	Wall		Wall	
	Wall			
	Wall			
			-1	-1
Start		-1	-1	+1





3 link arm



Value functions

- Value of a state:
 - Expected return starting from that state and following a particular policy $\pi \sim 4$

$$-V^{\pi}(s) = E_{\pi}\{R_{t}|s_{t} = s\}$$

= $E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}|s_{t} = s\right\}$

- Value of an action in a state:
 - Expected return of starting in that state, taking that action, and then following a particular policy

$$-Q^{\pi}(s,a) = E_{\pi}\{R_{t}|s_{t} = s, a_{t} = a\}$$
$$= E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}|s_{t} = s, a_{t} = a\right\}$$

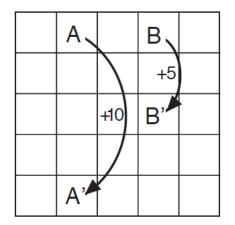
Why value functions?

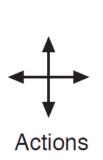
• Optimal value functions:

$$-V^{*}(s) = \max_{\pi} V^{\pi}(s) -Q^{*}(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

- These are the value functions given by the optimal policy π^*
- Any policy that is greedy w.r.t V^* (or Q^*) is optimal - So, $\pi^*(s) = \arg \max_{a \in A} Q^*(s, a)$

Random policy:

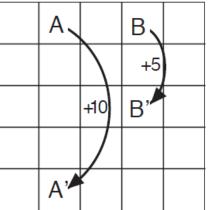




3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

• Optimal:



22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7



a) gridworld

b) v_*

c) π_*

RL Algorithms

- RL learning is **trial-and-error learning** to find a good policy from experience
- So as not to solve a large system of value function equations

$$V^{\pi'}(s) = \max_{a} E\left\{ r_{t+1} + \gamma V^{\pi'}(s_{t+1}) \mid s_t = s, a_t = a \right\} \\ = \max_{a} \sum_{s'} \mathcal{P}^a_{ss'} \Big[\mathcal{R}^a_{ss'} + \gamma V^{\pi'}(s') \Big].$$

– Which aren't even known!

- Exploration vs exploitation
- Model free vs model based algorithms

Q-Learning

- Initialise Q(s, a) arbitrarily
- Repeat (for each episode):
 - Initialise s
 - Repeat (for each step of episode):
 - Choose a from s using ϵ -greedy policy from Q

$$-a \leftarrow \begin{cases} \arg \max_{a} Q(s, a) & w. p. \epsilon \\ random & w. p. 1 - \epsilon \end{cases} \xrightarrow{exploit}$$

- Take action *a*, observe *r*, *s*'
- Update Q

$$-Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right] \text{ learn}$$

our future through science

- $s \leftarrow s'$
- Until *s* is terminal

Chapter 1: Safe Behaviour Generalisation (Action Priors)

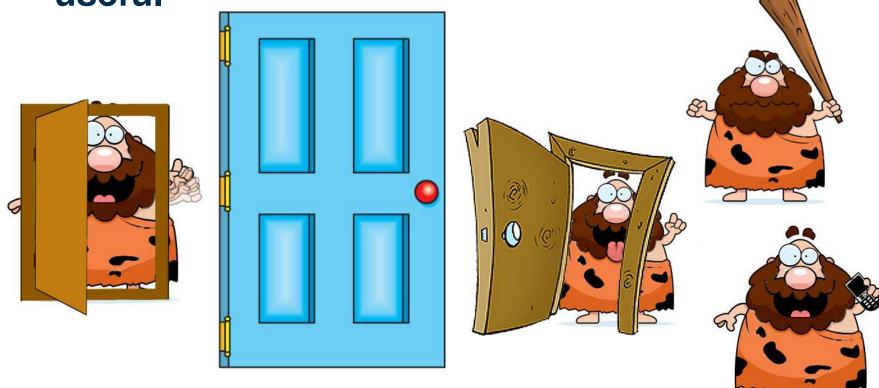
our future through science

Learning Domain Knowledge

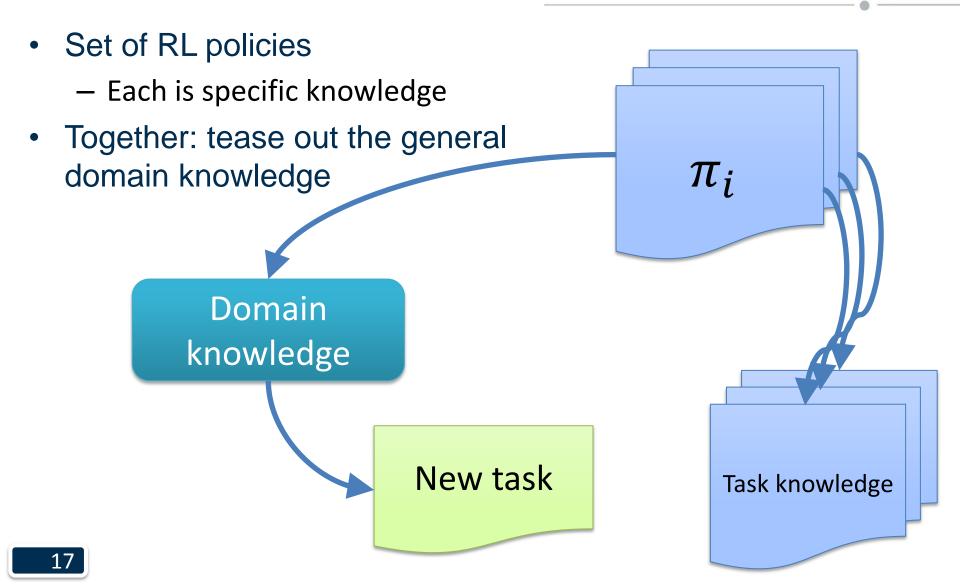
- Agent performing multiple tasks in the same environment
 - Improve over time, across tasks
- Lifelong learning: what to learn over an agent's lifetime?
 - Task independent regularities (structure) in the domain
 - Structure: general "common sense" behaviours

An Intuition

Although many actions may be possible in some context, only a small number are typically useful



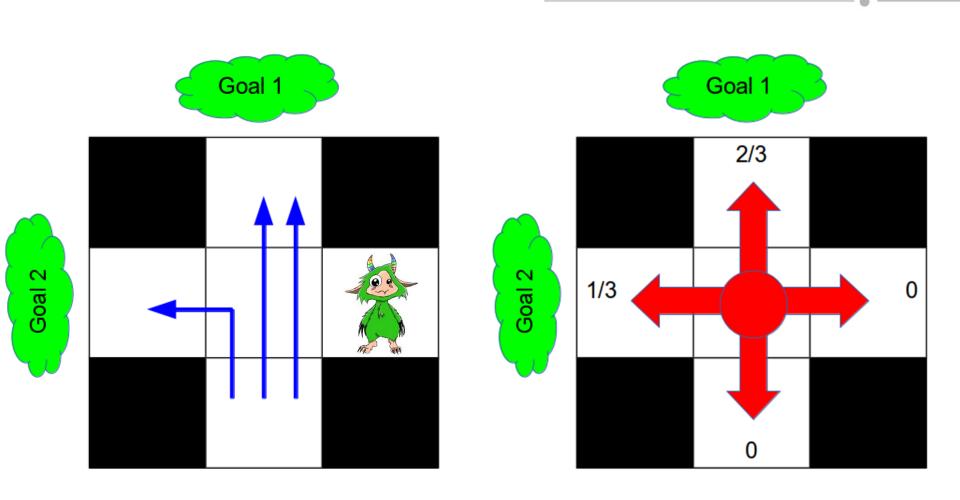
The Benefits of Multiple Tasks



Learning Domain Knowledge

- Tasks are drawn from a domain
 - Differ in goal: reward R
 - (In general: states S, transitions T)
- Learn model of behavioural invariances across domain
 - Task independent
 - From optimal policies
- Model: Context based distributions over action set
 - Action "usefulness" = reasonable behaviour choices
 - Condition on state (observations $\varphi(s)$)

An Illustration



(b)

A Model of Domain Knowledge

- Action priors $\theta_{\varphi(s)}(A)$ [Rosman and Ramamoorthy, 2012, 2015]
 - Dirichlet distribution over A
 - Conditioned on $\varphi(s)$
- $\theta_{\varphi(s)}(A) \sim Dir(\alpha_{\varphi(s)}(A))$
 - Parameters $\alpha_{\varphi(s)}(A)$

A Model of Domain Knowledge

- Notion of "action usefulness"
- Formally:
 - For each policy π , define a weight $w(\pi)$ Measure of confidence/skill
 - Action utility under a policy: $- U^{\pi}_{\varphi(s)}(a) = \delta(\pi(\varphi(s), a), \max_{a' \in A} \pi(\varphi(s), a'))$
 - Action utility under a policy set:

$$- \alpha_{\varphi(s)}(a) = \sum_{\pi \in \Pi} w(\pi) \, U^{\pi}_{\varphi(s)}(a) + \, \alpha^{0}_{\varphi(s)}(a)$$

Weighted sum of action utilities

Hyperprior

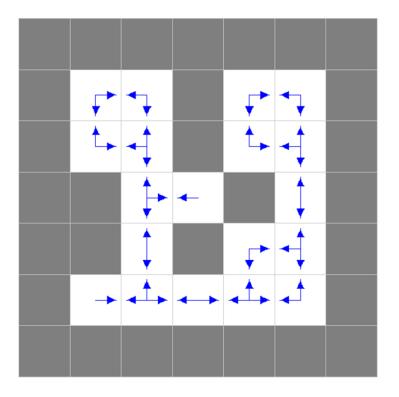
A Model of Domain Knowledge

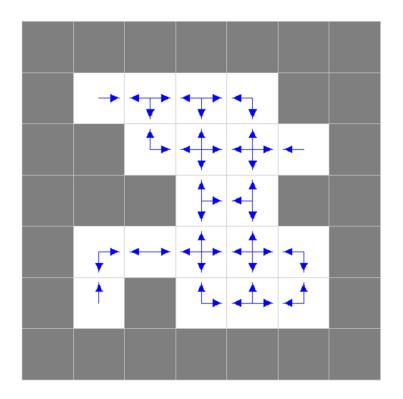
- Online update:
 - Counts for each $\varphi(s)$
 - For each policy π , define a weight $w(\pi)$ Measure of confidence/skill

$$- \alpha_{\varphi}^{0}(a) \leftarrow \alpha_{\varphi}(a), \quad \forall \varphi, a \quad \text{Initialise to some hyperprior} \\ - \alpha_{\varphi(s)}^{t+1}(a) \leftarrow \begin{cases} \alpha_{\varphi(s)}^{t}(a) + w(\pi^{t}), & \pi^{t}(s, a) = \max_{a'} \pi^{t}(s, a') \\ & \alpha_{\varphi(s)}^{t}(a), & \text{otherwise} \end{cases}$$

Given a new policy π^t , update counts of optimal actions

Example Priors





How to Use? Guided Exploration

• Action selection:

$$-\theta_{\varphi(s)}(A) \sim Dir(\alpha_{\varphi(s)})$$
$$-a \sim \theta_{\varphi(s)}(A)$$

Draw distributions from a Dirichlet

• Exploration in Q-learning (a twist on ϵ -greedy):

$$-a \leftarrow \begin{cases} \arg \max Q(s,a), w.p. \quad 1-\epsilon \\ a \\ a \in A, \\ w.p. \quad \epsilon \theta_{\varphi(s)}(a) \end{cases}$$

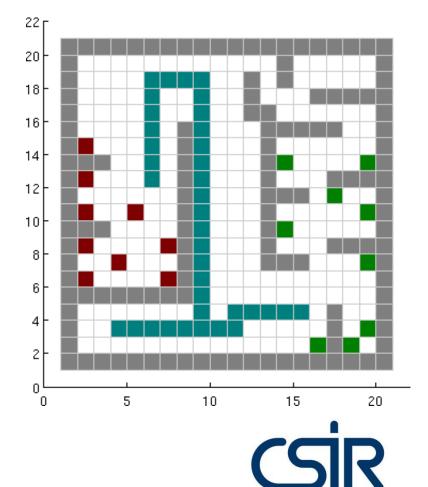
Let action prior bias exploration

Note: standard Q-learning uses uniform priors

Example: The Factory Domain

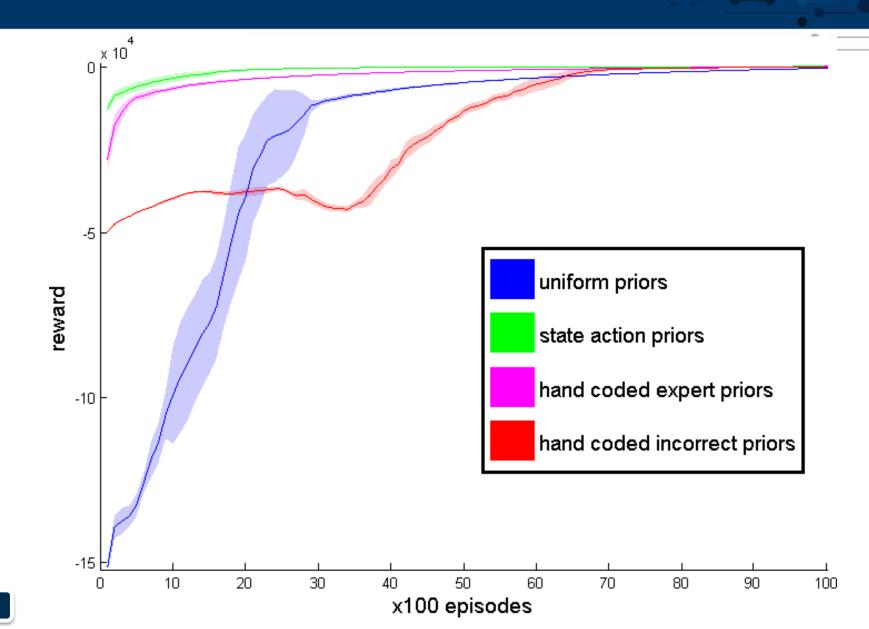
- The factory domain
 - Extended navigation domain
 - Task: procure and assemble a list of items
 - Assembly/procurement points, express route
 - Actions:

N, E, S, W, Procure, Assemble



our future through science

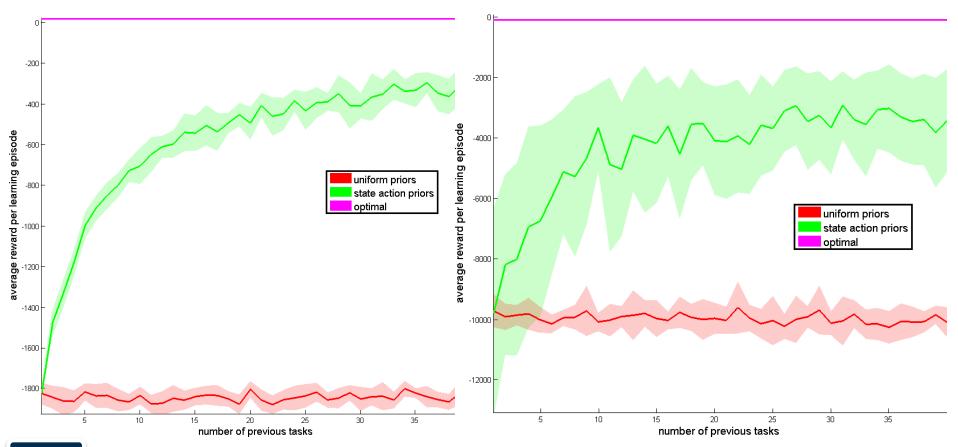
The Effect of Priors



Learning Across Multiple Tasks

Assemble 1 item

Assemble 4 items

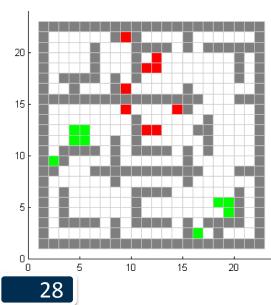


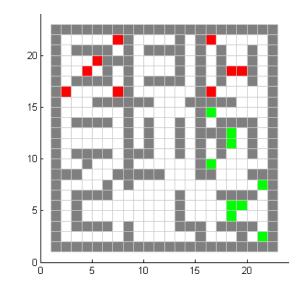
The Factory Domain 2.0

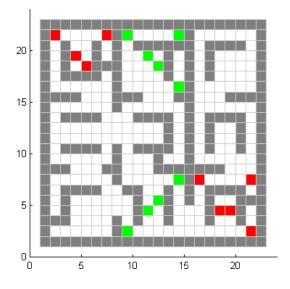
• The extended factory domain

Each instance different

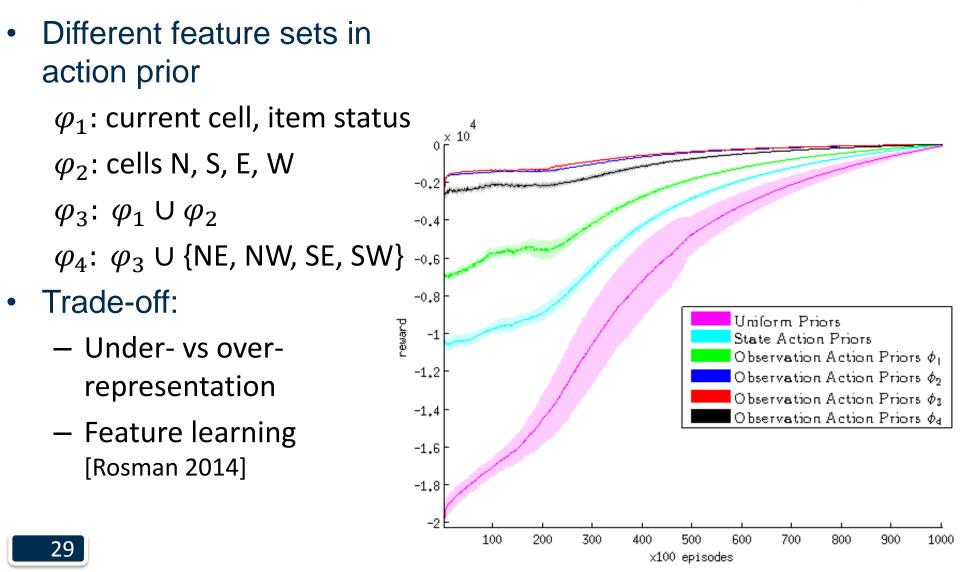
- Assembly, procurement regions
- Semi-random structure
- States are not useful for transfer!







Results: Effect of Different Features



An Application: Autonomous Caregivers

Goal

Autonomous agent: enable novice agents to safely learn in a selfdirected manner

Caregivers Perform Risk Mitigation

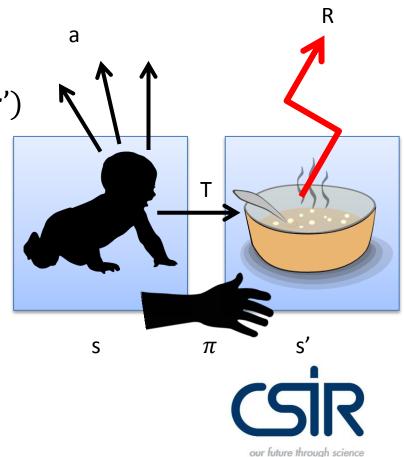
Approach

Adapt the environment to promote safety

- Without sacrificing quality of learning experience
- Assist through indirect communication and manipulation

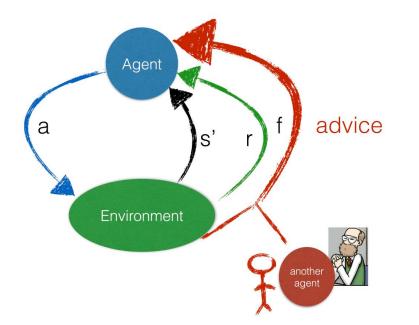
Model of Novice Behaviour

- Novice modelled as an MDP
 - Environment states $s \in S$
 - Actions $a \in A$
 - Environment dynamics T(s, a, s')
 - Rewards R(s, a)
 - Policy $\pi(s, a)$



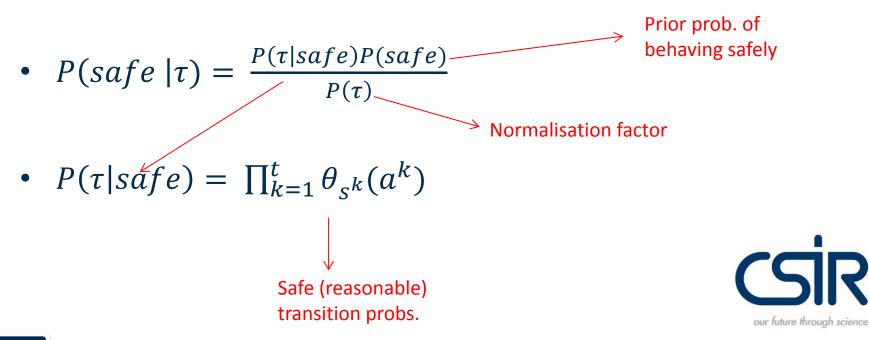
Caregivers Are A Shaping Mechanism!

- Corrective signals are provided by caregivers
 - Informed by an internal model of reasonable behaviour to assess how risk prone a novice agent is
 - Provided selectively (when necessary)
 - Provided with foresight (before harm is inevitable)



A Model of Safety

- Goal: Determine if novice is behaving safely
 - Estimate policy similarities between novice and expert
- Current trajectory: $\tau = s^{t+1}, a^t, s^t, a^{t-1}, s^{t-1}, \dots$
- Safe behaviour: expert policies $\rightarrow \theta_s(A)$



A Model of Danger

- Goal: Estimate potential future dangers
 - Expected environmental harm of likely future actions
- Evaluate expectation for each potential source of harm *o*:

$$P(collision | \tau) \times d_o$$
-

Extrinsic damage caused by collision with *o*

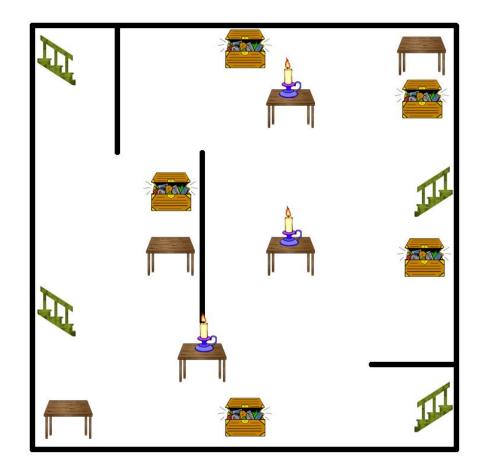
$$= (1 - P(safe | \tau)) \times P(reach_o | \tau) \times d_o$$

Prob. of behaving safely

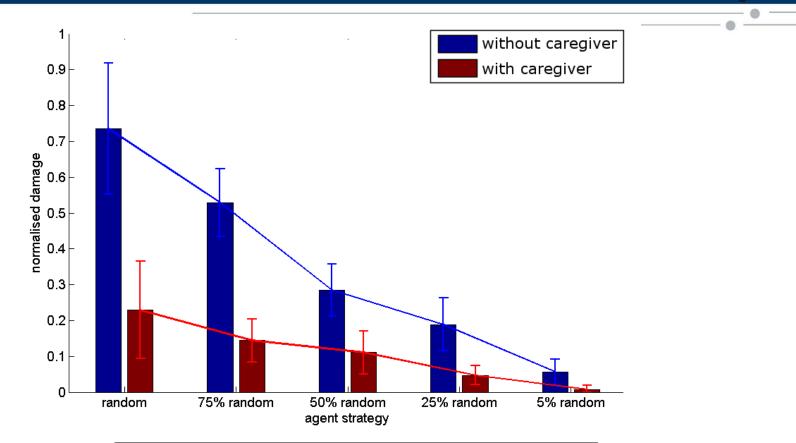
Prob. of reaching $o \propto$ distance to o from current position

Toybox World

- Exploring to reach toy boxes [ICDL 2015]
- Hazards:
 - Major damage: candles, stairs
 - Minor damage: tables
- Novice agent:
 - ϵ -greedy
 - 'Play' for 200 time steps
- Caregiver agent:
 - Trained on 1,000 expert steps
 - Moves 3x faster than novice
- Interventions:
 - Move candle between tables
 - Block stairwell

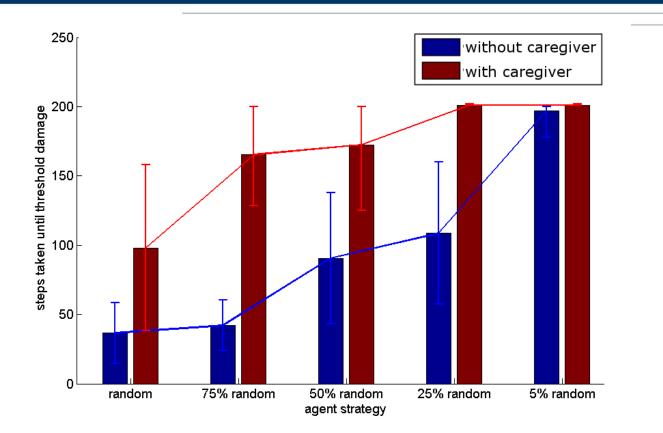


Results: Reducing Harm



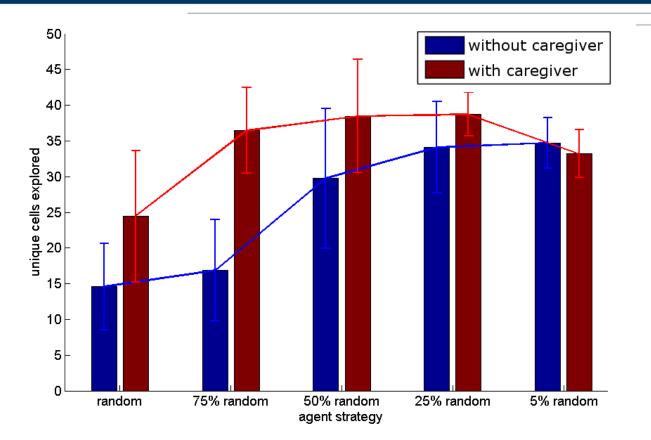
Agent	No caregiver	With caregiver		
random motion	0.7346	0.2291		
75% random	0.5295	0.1438		
50% random	0.2846	0.1106		
25% random	0.1887	0.0466		
5% random	0.0565	0.0072		

Results: Exploration Time



Agent	No caregiver	With caregiver		
random motion	35.50	97.05		
75% random	41.05	164.20		
50% random	89.50	171.50		
25% random	107.70	200.00		
5% random	195.75	200.00		

Results: Environment Coverage



Agent	No caregiver	With caregiver
random motion	14.6000	24.4500
75% random	16.8500	36.4500
50% random	29.7500	38.4500
25% random	34.1000	38.7000
5% random	34.7000	33.2000

Conclusion

- Action priors
 - Behavioural domain invariances
 - Task independent
 - "Common sense" knowledge
- Improve learning speed
 - Use as exploration bias in RL
- Identify safe/normal behaviour
- General paradigm for multi-task decision making agents
 - If learning multiple tasks in the same domain, learn from previous tasks!

Chapter 2: Efficient Skill Selection (Bayesian Policy Reuse)

our future through science

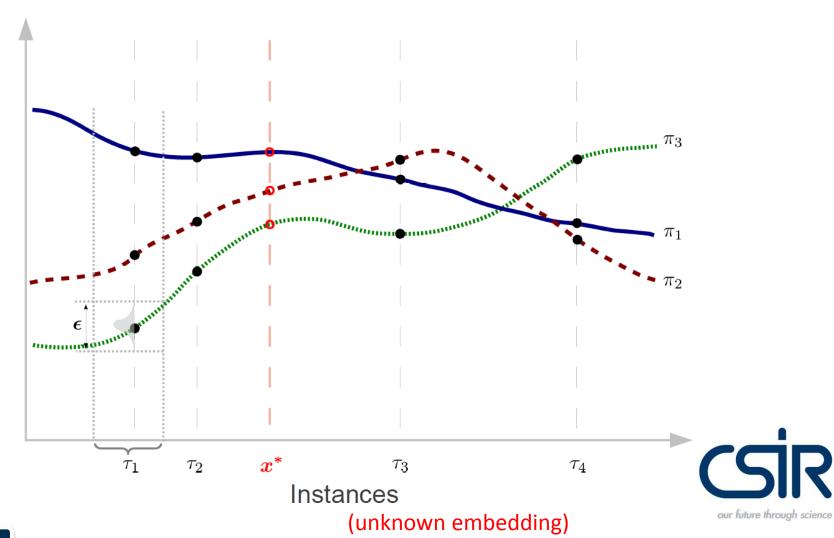
Responding Online to New Situations

- Engaged in a task
 - Not enough time to learn a policy
- Previous experience of tasks
 - Choose the best policy in a sequence of interactions
 - Based on some latent variable

The Policy Reuse Problem

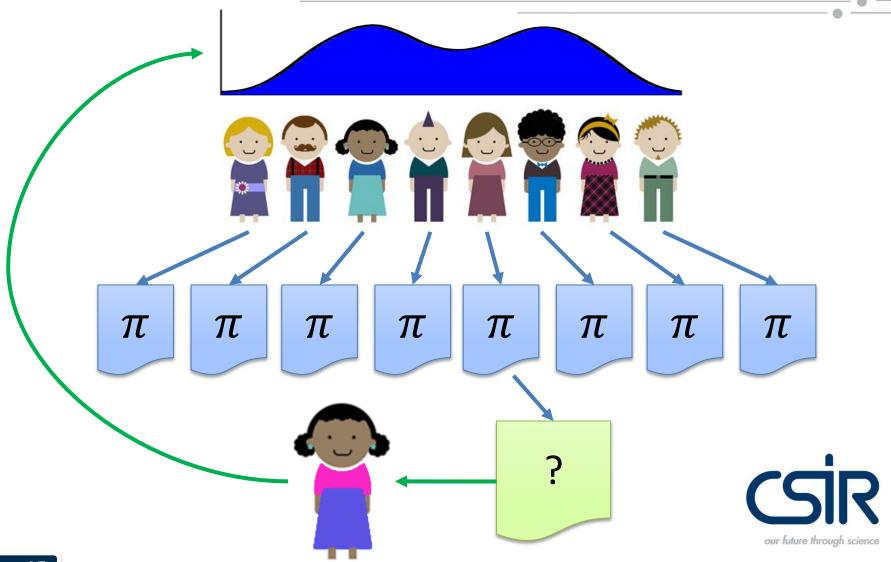
- Given:
 - Exposure to previous task instances
 - A policy library trained on those tasks
- Experience a new task
- Goal:
 - Select policies for new task to minimise total regret
- Assume: limited task duration
 - Cannot learn from scratch

Insight



Performance

Bayesian Policy Reuse Overview



Ingredient 1: Performance

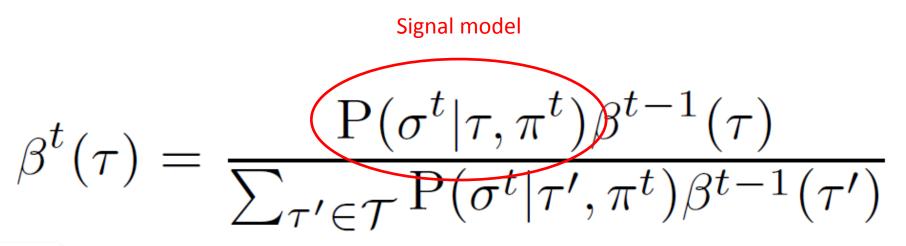
- Performance *U*:
 - Returns achieved by a policy on a task
- Performance models:
 - $-P(U|\tau,\pi)$
 - Maintain for each experienced task and policy
- Use to estimate performance of a policy on an unknown task

Ingredient 2: Signals

- Signals σ: information correlated with task performance, provided during task execution
 - E.g. rewards, (partial) states
- Signal/observation models:
 - $-P(\sigma|\tau,\pi)$
 - Maintain for each task and policy
- Use as feedback signal for identifying task

Belief Models

- Maintain belief over set of task instances τ
- Update
 - Based on signals after playing a policy
 - Over ALL known tasks!
 - Notion of task similarity



Bayesian Policy Reuse

- 1. Select policy
- 2. Apply policy
- 3. Observe signal
- 4. Update belief

Algorithm 1 Bayesian Policy Reuse (BPR)

- **Require:** Problem space \mathcal{X} , Policy library Π , observation space Σ , prior over the problem space $P(\mathcal{X})$, observation model $P(\Sigma|\mathcal{X},\Pi)$, performance model $P(U|\mathcal{X},\Pi)$, number of episodes K.
- 1: Initialise beliefs: $\beta^0(\mathcal{X}) \longleftarrow \mathcal{P}(\mathcal{X})$.
- 2: for episodes $t = 1 \dots K$ do
- 3: Select a policy $\pi^t \in \Pi$ using the current belief β^{t-1} and the performance model $P(U|\mathcal{X}, \pi^t)$.
- 4: Apply π^t on the task instance.
- 5: Obtain an observation signal σ^t from the environment.
- 6: Update the belief $\beta^t(\mathcal{X}) \propto P(\sigma^t | \mathcal{X}, \pi^t) \beta^{t-1}(\mathcal{X})$.

7: end for

Policy Selection

- Selection heuristics (based on Bayesian optimisation):
- Probability of Improvement (PI):

$$\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{\tau \in \mathcal{T}} \beta(\tau) \mathbf{P}(U^+ | \tau, \pi)$$

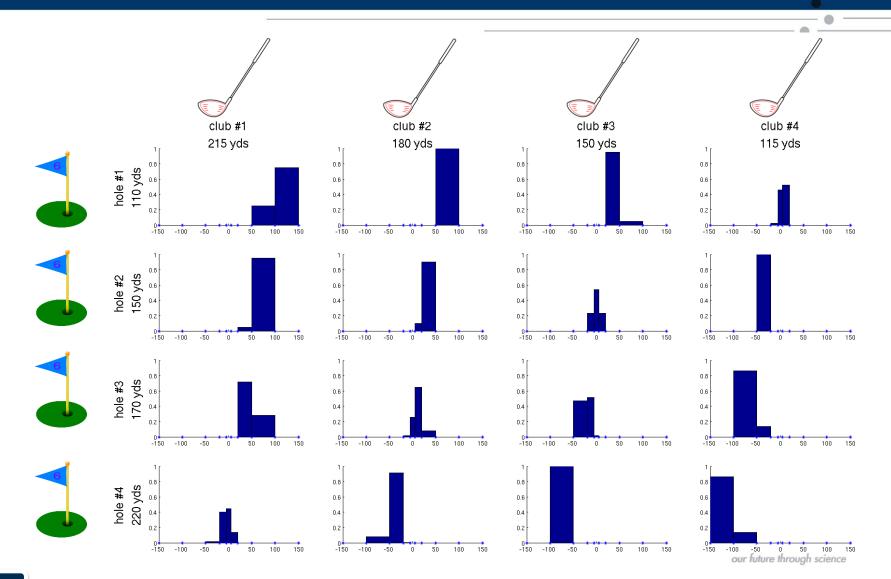
• Expected Improvement (EI): $\hat{\pi} = \arg \max_{\pi \in \Pi} \int_{\bar{U}}^{U^{max}} \sum_{\tau \in \mathcal{T}} \beta(\tau) P(U^{+} | \tau, \pi) dU^{+}$

Illustrative Example – The Golf Range

Ground truth:

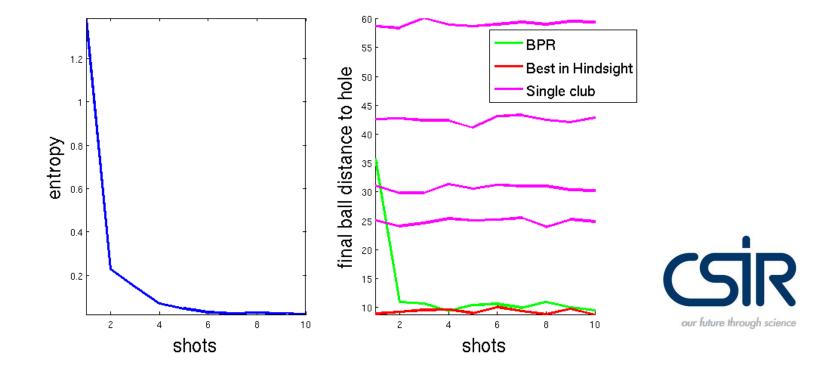
Club	Average Yardage	Standard Deviation of Yardage			
$\pi_1 = 3$ -wood	215	8.0			
$\pi_2 = 3$ -iron	180	7.2			
$\pi_3 = 6$ -iron	150	6.0			
$\pi_4 = 9$ -iron	115	4.4			
under shooting over shooting					
-150 yds	-100 -50 -20 -5	5 20 50 100 150 yds			
	on ta	arget			
		CSR our future through science			
51					

Illustrative Example – Signal Models



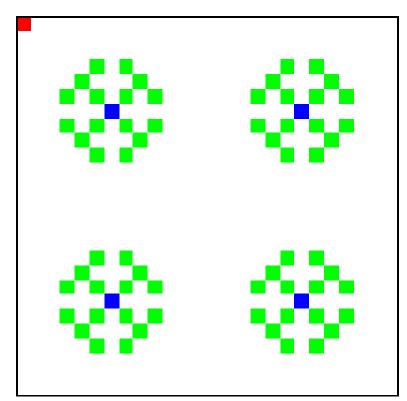
Results on New Task

Shot	1	2	3	4	5	6	7	8
Club	1	2	2	2	2	2	2	2
Error	35.3657	13.1603	4.2821	6.7768	2.0744	11.0469	8.1516	2.4527
Signal	20 - 50	5 - 20	-5-5	5 - 20	-5-5	5 - 20	5 - 20	-5-5
β entropy	1.3863	0.2237	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

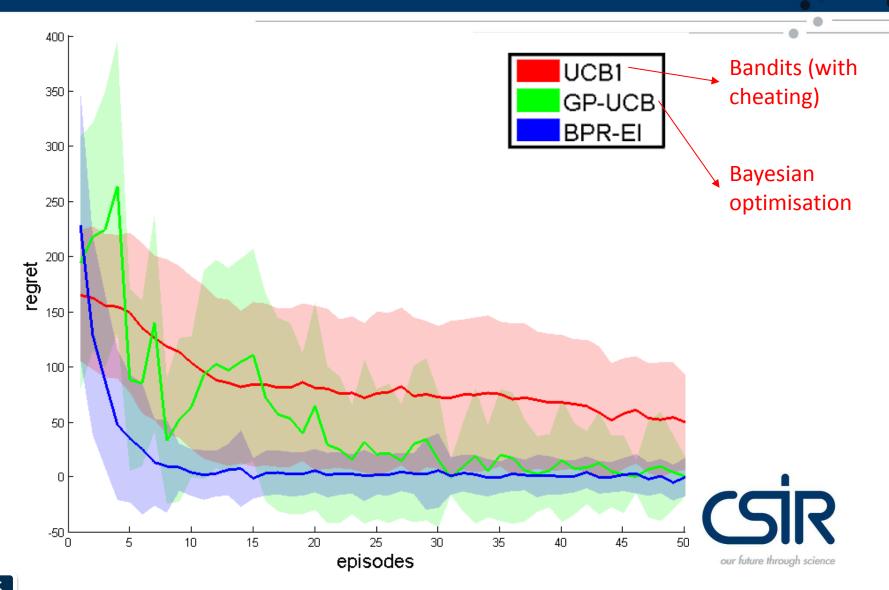


Surveillance Domain

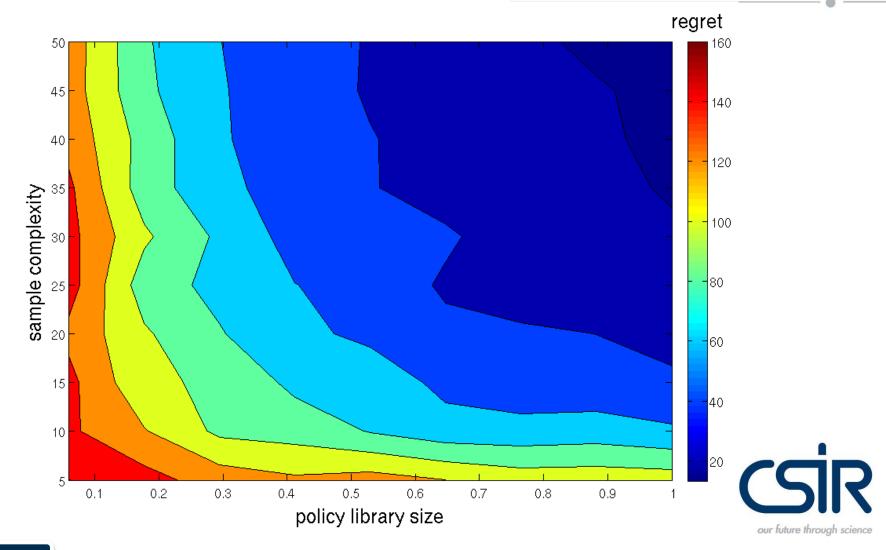
- Watching for intruders, from hills
 Connected visibility
- 68 tasks



Rapid Identification

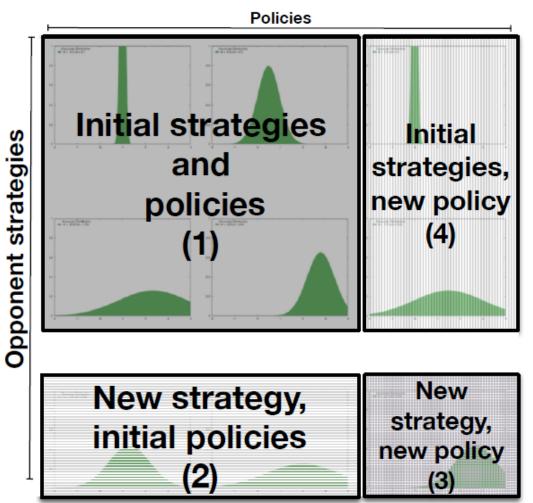


Library Size-Episodes-Regret Trade-off



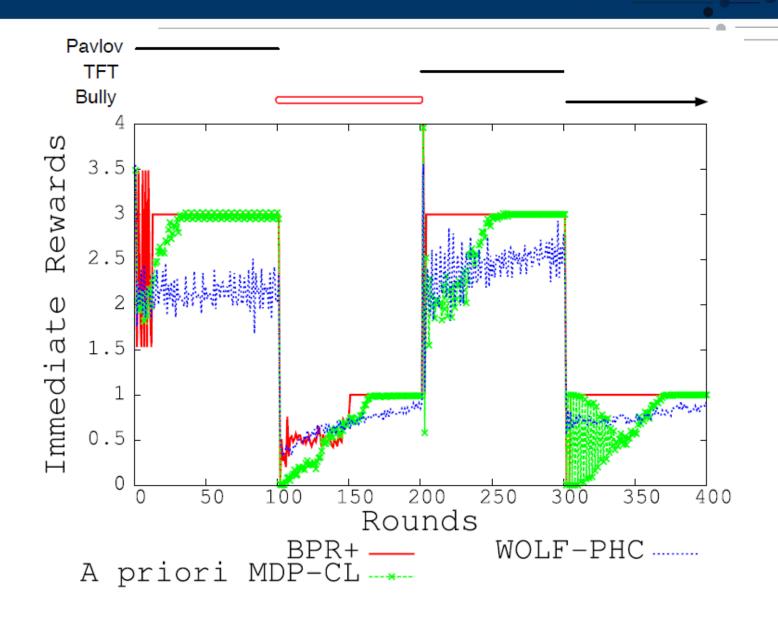
Non-stationarity and Adversity

- Changing opponents:
 - Keep all beliefs nonzero
- New strategies:
 - Unlikely reward sequence
 - Enable learning



[Hernandez-Leal, Taylor, Rosman, *submitted*]

Multi-agents: Tracking Changes



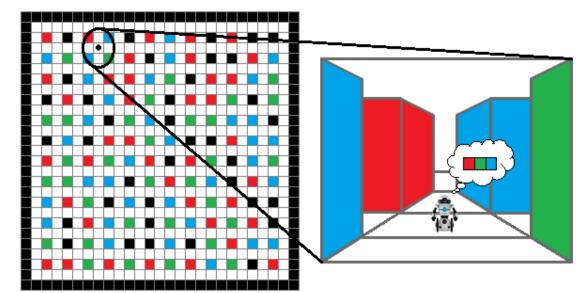
58

Summary

- Bayesian Policy Reuse: general framework for rapid policy selection
 - Maintain beliefs over tasks
 - Update with observation models
 - Select according to performance models
- Interact efficiently with unknown tasks and agents

Future Work

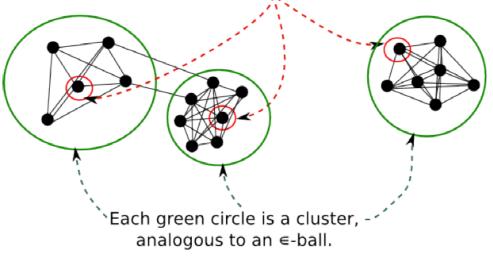
- Extensions:
 - Continuous action/task sets
 - Distributions over parameter space
 - Different decision making paradigms
 - Classical planning
 - POMDPs
 - MCTS



Future Work

- Structure in task space?
 - Non-parametric:
 - Clustering MDPs
 - Parametric:
 - Hidden parameter MDPs
 - Compositionality and hierarchy of behaviours

Red circles show the MDPs chosen as source MDPs. Together they are analogue of an ∈-net over the set of all previous MDPs.



Thank you!

And thanks to all these great people:

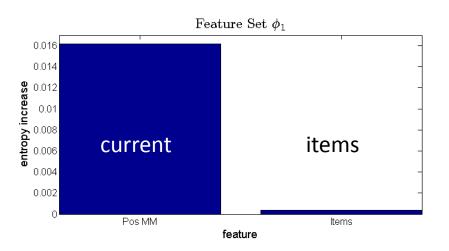
Dr Subramanian Ramamoorthy (U. of Edinburgh) Dr Majd Hawasly (U. of Edinburgh) Dr Hassan Mahmud (U. of Edinburgh) Bradley Hayes (Yale University) Pablo Hernandez-Leal (INAOE) Prof George Konidaris (Duke University) Prof Brian Scassellati (Yale University) Prof Matt Taylor (Washington State University)

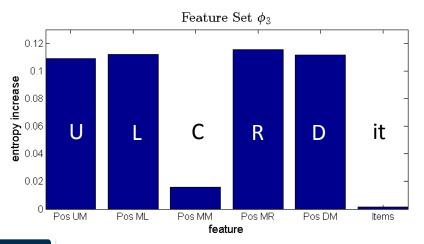
our future through science

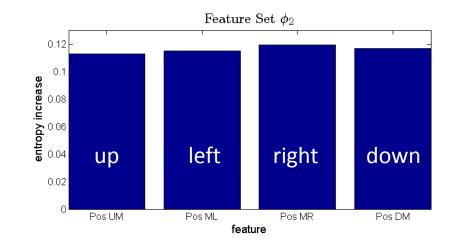
Benjamin Rosman (brosman@csir.co.za)

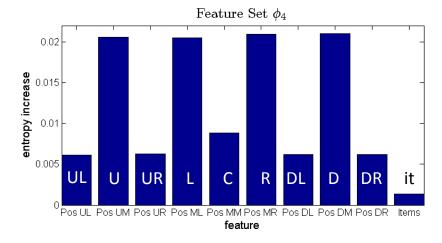
Action Priors: Feature Entropy

Effect of removing a feature:



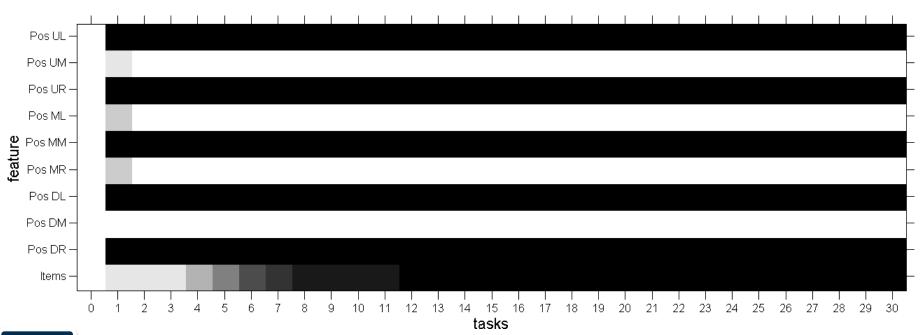






Adaptive Feature Sets

- Features selected as a function of number of tasks
- Initial features: 10 (values: $4^9 \times 3$)
- Final features: 4 (values: 4⁴)



Results: Online Feature Selection

• Effect of priors: episodes 1 and convergence

