The Mad Hatters

Jonathan Kariv

November 13, 2015

Recreational Puzzles

- We've all heard some hats puzzles before.

Recreational Puzzles

- We've all heard some hats puzzles before.
- Earliest reference, 1961 Hardin and Taylor "An Introduction to Infinite Hat Problems.

Recreational Puzzles

- We've all heard some hats puzzles before.
- Earliest reference, 1961 Hardin and Taylor "An Introduction to Infinite Hat Problems.
- Gardner, 1978 Aha insight! and 1989 Mathematical Induction and Colored Hats

Recreational Puzzles

- We've all heard some hats puzzles before.
- Earliest reference, 1961 Hardin and Taylor "An Introduction to Infinite Hat Problems.
- Gardner, 1978 Aha insight! and 1989 Mathematical Induction and Colored Hats
- Winkler, 2004 Mathematical Puzzles: A Connoisseur's Collection

Our Problem

- Proposed by Levine and Khovanova 2010.

Our Problem

- Proposed by Levine and Khovanova 2010.
- Two players in a cooperative game.

Our Problem

- Proposed by Levine and Khovanova 2010.
- Two players in a cooperative game.
- Both have infinitely (countable indexed by integers) many hats placed on there head

Our Problem

- Proposed by Levine and Khovanova 2010.
- Two players in a cooperative game.
- Both have infinitely (countable indexed by integers) many hats placed on there head
- Hats are either black or white. White with probabiity p, colours independent.

Our Problem

- Proposed by Levine and Khovanova 2010.
- Two players in a cooperative game.
- Both have infinitely (countable indexed by integers) many hats placed on there head
- Hats are either black or white. White with probabiity p, colours independent.
- They choose a hat on there own head simultaneously. Win if and only if both choose a white hat

Our Problem

- Proposed by Levine and Khovanova 2010.
- Two players in a cooperative game.
- Both have infinitely (countable indexed by integers) many hats placed on there head
- Hats are either black or white. White with probabiity p, colours independent.
- They choose a hat on there own head simultaneously. Win if and only if both choose a white hat
- What is the optimal strategy?

Example-People in a Line

- If you can't solve a problem, then there is an easier problem you can solve: find it. George Polya

Example-People in a Line

- If you can't solve a problem, then there is an easier problem you can solve: find it. George Polya
- 10 people wash up on an island. A monster finds them and wants to eat them. They beg for mercy

Example-People in a Line

- If you can't solve a problem, then there is an easier problem you can solve: find it. George Polya
- 10 people wash up on an island. A monster finds them and wants to eat them. They beg for mercy
- Monster says that he'll come back the next day and line them up and put hats on them.

Example-People in a Line

- If you can't solve a problem, then there is an easier problem you can solve: find it. George Polya
- 10 people wash up on an island. A monster finds them and wants to eat them. They beg for mercy
- Monster says that he'll come back the next day and line them up and put hats on them.
- One hat a player. Can see players in front of you. Must guess your own hat colour. Can hear answers of people behind you first.

Example-People in a Line

- If you can't solve a problem, then there is an easier problem you can solve: find it. George Polya
- 10 people wash up on an island. A monster finds them and wants to eat them. They beg for mercy
- Monster says that he'll come back the next day and line them up and put hats on them.
- One hat a player. Can see players in front of you. Must guess your own hat colour. Can hear answers of people behind you first.
- Players who guess wrong are eaten, those who guess right get shown the way off the isand.

Example-Example-People in a Line

Back to Levine problem

- The idea in the "line problem" is that the first guy shares information.

Back to Levine problem

- The idea in the "line problem" is that the first guy shares information.
- Can't do this here.

Back to Levine problem

- The idea in the "line problem" is that the first guy shares information.
- Can't do this here.
- Play is simulataneous.

Back to Levine problem

- The idea in the "line problem" is that the first guy shares information.
- Can't do this here.
- Play is simulataneous.
- Could win with probability p if it wasn't!!! Which is a clear upper bound.

Back to Levine problem

- The idea in the "line problem" is that the first guy shares information.
- Can't do this here.
- Play is simulataneous.
- Could win with probability p if it wasn't!!! Which is a clear upper bound.
- This does at least identify what's hard here: We can't share information!

Another Classic Problem

- Two players. One hat each.

Another Classic Problem

- Two players. One hat each.
- Either black or white (50-50 i.i.d), players simutaneously guess the colour of there own hat.

Another Classic Problem

- Two players. One hat each.
- Either black or white (50-50 i.i.d), players simutaneously guess the colour of there own hat.
- Can we beat $1 / 4$?

Another Classic Problem

- Two players. One hat each.
- Either black or white (50-50 i.i.d), players simutaneously guess the colour of there own hat.
- Can we beat $1 / 4$?
- Yes! Both players assume that they have the same colour hat (50-50 chance).

Another Classic Problem

- Two players. One hat each.
- Either black or white (50-50 i.i.d), players simutaneously guess the colour of there own hat.
- Can we beat $1 / 4$?
- Yes! Both players assume that they have the same colour hat (50-50 chance).
- Win half the time!!!

Simple Strategy

- Big point here is that we can't make anyone more likely to guess right but we can correlate when they both guess right

Simple Strategy

- Big point here is that we can't make anyone more likely to guess right but we can correlate when they both guess right
- Question: How do we do that in the infinite hats case?

Simple Strategy

- Big point here is that we can't make anyone more likely to guess right but we can correlate when they both guess right
- Question: How do we do that in the infinite hats case?
- Two simple ways: "first white/black strategy".

Simple Strategy

- Big point here is that we can't make anyone more likely to guess right but we can correlate when they both guess right
- Question: How do we do that in the infinite hats case?
- Two simple ways: "first white/black strategy".
- First white wins with probability $\frac{p^{2}}{1-(1-p)^{2}}=\frac{p}{2-p}$.

Simple Strategy

- Big point here is that we can't make anyone more likely to guess right but we can correlate when they both guess right
- Question: How do we do that in the infinite hats case?
- Two simple ways: "first white/black strategy".
- First white wins with probability $\frac{p^{2}}{1-(1-p)^{2}}=\frac{p}{2-p}$.
- First black turns out to win with probability $\frac{2 p^{2}}{1+p}$.

Simple Strategy

- Big point here is that we can't make anyone more likely to guess right but we can correlate when they both guess right
- Question: How do we do that in the infinite hats case?
- Two simple ways: "first white/black strategy".
- First white wins with probability $\frac{p^{2}}{1-(1-p)^{2}}=\frac{p}{2-p}$.
- First black turns out to win with probability $\frac{2 p^{2}}{1+p}$.
- First less likely hat colour is best.

Can we do Better?

- Yes!!!!

Can we do Better?

- Yes!!!!
- First idea, try looking at the first two hats only.

Can we do Better?

- Yes!!!!
- First idea, try looking at the first two hats only.
- Four things Player 1 could see, so 16 possible strategies for him.

Can we do Better?

- Yes!!!!
- First idea, try looking at the first two hats only.
- Four things Player 1 could see, so 16 possible strategies for him.
- 256 group strategies.

Two hats.

Two hats	$\boldsymbol{\square}$	$\boldsymbol{\square}$	$\square \square$	$\square \square$
$\boldsymbol{\square}$				
$\square \square$				

Two hats.

Two hats	$\square \square$	$\square \square$	$\square \square$	$\square \square$
$\square \square$	lose	lose	lose	lose
$\square \square$	lose			
$\square \square$	lose			
$\square \square$	lose			win

Two hats.

Two hats	$\square \square$	$\square \square$	$\square \square$	$\square \square$
$\square \square$	lose	lose	lose	lose
$\square \square$	lose			share
$\square \square$	lose			share
$\square \square$	lose	share	share	win

Two hats.

Two hats	$\square \square$	$\square \square$	$\square \square$	$\square \square$
$\square \square$	lose	lose	lose	lose
$\square \square$	lose	win	lose	lose
$\square \square$	lose	lose	win	win
$\square \square$	lose	lose	win	win

Three hats.

Three hats	\emptyset	$\{1\}$	$\{2\}$	$\{1,2\}$	$\{3\}$	$\{1,3\}$	$\{2,3\}$	$\{1,2,3\}$
Picture	$\square \square \square$	$\square \square$	$\square \square$	$\square \square \square$	$\square \square$	$\square \square \square$	$\square \square \square$	$\square \square \square$
Choice	any	1	3	1	2	2	3	any

Table: Optimal strategy on 3 hats

For convience

White hats	\emptyset	$\{1\}$	$\{2\}$	$\{1,2\}$	$\{3\}$	$\{1,3\}$	$\{2,3\}$	$\{1,2,3\}$
Picture	$\square \square$	$\square \square \square$	$\square \square \square$	$\square \square \square$	$\square \square$	$\square \square \square$	$\square \square \square$	$\square \square \square$
Choice	1	1	3	1	2	2	3	1

Table: Optimal strategy on 3 hats

Three hats-example.

White hats	\emptyset	$\{1\}$	$\{2\}$	$\{1,2\}$	$\{3\}$	$\{1,3\}$	$\{2,3\}$	$\{1,2,3\}$
Picture	\square	$\square \square$	$\square \square$	$\square \square \square$	$\square \square$	$\square \square \square$	$\square \square \square$	$\square \square \square$
Choice	1	1	3	1	2	2	3	1

Table: Optimal strategy on 3 hats

\square	\square
\square	\square
\square	\square
Player 1	Player 2

Table: Player 1 chooses hat 1, Player 2 hat 2. They win

Three hats.

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.
- Three hats $43,046,721$ cases. Not clear way to make it much easier. Done by computer search.

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.
- Three hats $43,046,721$ cases. Not clear way to make it much easier. Done by computer search.
- k hats $\left(k^{2^{k}}\right)^{2}$ cases. Grows ridicoulously fast.

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.
- Three hats $43,046,721$ cases. Not clear way to make it much easier. Done by computer search.
- k hats $\left(k^{2^{k}}\right)^{2}$ cases. Grows ridicoulously fast.
- $k=5$ gives $5.42 * 10^{44}$ options $k=10$ gives 10^{2048} options.

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.
- Three hats $43,046,721$ cases. Not clear way to make it much easier. Done by computer search.
- k hats $\left(k^{2^{k}}\right)^{2}$ cases. Grows ridicoulously fast.
- $k=5$ gives $5.42 * 10^{44}$ options $k=10$ gives 10^{2048} options.
- Hard to design a stretegy.

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.
- Three hats $43,046,721$ cases. Not clear way to make it much easier. Done by computer search.
- k hats $\left(k^{2^{k}}\right)^{2}$ cases. Grows ridicoulously fast.
- $k=5$ gives $5.42 * 10^{44}$ options $k=10$ gives 10^{2048} options.
- Hard to design a stretegy.
- So we evolved one

Can we do Better?

- Two hats 256 cases. With a bit of logic can do by hand.
- Three hats $43,046,721$ cases. Not clear way to make it much easier. Done by computer search.
- k hats $\left(k^{2^{k}}\right)^{2}$ cases. Grows ridicoulously fast.
- $k=5$ gives $5.42 * 10^{44}$ options $k=10$ gives 10^{2048} options.
- Hard to design a stretegy.
- So we evolved one

Algorithm

- Take a random strategy (current parent)

Algorithm

- Take a random strategy (current parent)
- Compute it's performance.

Algorithm

- Take a random strategy (current parent)
- Compute it's performance.
- Change it slightly (it's child)

Algorithm

- Take a random strategy (current parent)
- Compute it's performance.
- Change it slightly (it's child)
- If child is better than parent, make child the new parent

Algorithm

- Take a random strategy (current parent)
- Compute it's performance.
- Change it slightly (it's child)
- If child is better than parent, make child the new parent
- If not eliminate child and make a new one

Algorithm

- Take a random strategy (current parent)
- Compute it's performance.
- Change it slightly (it's child)
- If child is better than parent, make child the new parent
- If not eliminate child and make a new one
- Wait a lot of generations

Algorithm

- Rerun a lot

Algorithm

- Rerun a lot
- Symmetric strategies seem best.

Algorithm

- Rerun a lot
- Symmetric strategies seem best.
- At some point we only looked at them so we could increase the number of hats

Algorithm

- Rerun a lot
- Symmetric strategies seem best.
- At some point we only looked at them so we could increase the number of hats
- With a lot of hats look for a pattern

Algorithm

- Rerun a lot
- Symmetric strategies seem best.
- At some point we only looked at them so we could increase the number of hats
- With a lot of hats look for a pattern
- We found some

Algorithm

- Rerun a lot
- Symmetric strategies seem best.
- At some point we only looked at them so we could increase the number of hats
- With a lot of hats look for a pattern
- We found some
- Took there "natural" infinite analogs.

Best known Strategies

- 3 of them all based on the 3-hat strategy

Best known Strategies

- 3 of them all based on the 3-hat strategy
- S_{1} Look at first 3 if not all the same play 3 hat. If monochrome disgard hats 1 and 2 for both players and replay S_{1}

Best known Strategies

- 3 of them all based on the 3-hat strategy
- S_{1} Look at first 3 if not all the same play 3 hat. If monochrome disgard hats 1 and 2 for both players and replay S_{1}
- S_{2} like S_{1} but disgard 3 hats instead of 2 .

Best known Strategies

- 3 of them all based on the 3-hat strategy
- S_{1} Look at first 3 if not all the same play 3 hat. If monochrome disgard hats 1 and 2 for both players and replay S_{1}
- S_{2} like S_{1} but disgard 3 hats instead of 2 .
- S_{3} Dual of S_{1}. Toggle all colours and play S_{1}

Computing Performance

- We needed to split possible hat configuations into a few cases

Computing Performance

- We needed to split possible hat configuations into a few cases
- Seven for S_{1}. Each one a geometric series or sum thereof.

Computing Performance

- We needed to split possible hat configuations into a few cases
- Seven for S_{1}. Each one a geometric series or sum thereof.
- S_{2} was easier because fewer interactions.

Computing Performance

- We needed to split possible hat configuations into a few cases
- Seven for S_{1}. Each one a geometric series or sum thereof.
- S_{2} was easier because fewer interactions.
- S_{3} computed as the dual of S_{1}.

Computing Performance

$$
\begin{aligned}
V_{S^{d}}(p) & =\mathbb{P}\left(A_{S^{d}}^{W, W}(p)\right) \\
& =\mathbb{P}\left(A_{S}^{B, B}(q)\right) \\
& =p-\mathbb{P}\left(A_{S}^{B, W}(q)\right) \\
& =p-\left(q-\mathbb{P}\left(A_{S}^{W, W}(q)\right)\right) \\
& =p-q+\mathbb{P}\left(A_{S}^{W, W}(q)\right) \\
& =2 p-1+V_{S}(q)
\end{aligned}
$$

Performance

For our game with probability p of each hat being white, this strategy gives the following lower bound on $V(p)$:

$$
\begin{aligned}
& \text { 1. } \frac{p\left(1+p+p^{2}+3 p^{3}-3 p^{4}+p^{5}\right)}{(1+p)(2-p)\left(1+p^{2}\right)} \leq V(p) \text { for } p \leq \frac{1}{2} \text {; } \\
& \text { 2. } \frac{p\left(1+5 p-10 p^{2}+10 p^{3}-5 p^{4}+p^{5}\right)}{\left(2-2 p+p^{2}\right)(1+p)(2-p)} \text { for } \frac{1}{2} \leq p
\end{aligned}
$$

Upper Bound

- First Upper bound Noga Alon 3/8

Upper Bound

- First Upper bound Noga Alon 3/8
- New game, with extra information

Upper Bound

- First Upper bound Noga Alon 3/8
- New game, with extra information
- We know Player 2 will have either configuaton X or it's conjugate (toggeled state)

Upper Bound

- First Upper bound Noga Alon 3/8
- New game, with extra information
- We know Player 2 will have either configuaton X or it's conjugate (toggeled state)
- Two stratergies for Player 1. Same or different.

Upper Bound

- First Upper bound Noga Alon 3/8
- New game, with extra information
- We know Player 2 will have either configuaton X or it's conjugate (toggeled state)
- Two stratergies for Player 1. Same or different.
- Can get $3 / 8$ with different.

Upper Bound

- First Upper bound Noga Alon 3/8
- New game, with extra information
- We know Player 2 will have either configuaton X or it's conjugate (toggeled state)
- Two stratergies for Player 1. Same or different.
- Can get $3 / 8$ with different.

Upper Bound

- For general rational numbers a / b we can tweak Freiling's method to get an upper bound of $\frac{a}{b}-\left(\frac{a}{b}\right)^{\binom{b}{a}}\left(1-\frac{a}{b}\right)$

Upper Bound

- For general rational numbers a / b we can tweak Freiling's method to get an upper bound of $\frac{a}{b}-\left(\frac{a}{b}\right)^{\binom{b}{a}}\left(1-\frac{a}{b}\right)$
- Using duality we also get an upper bound of

$$
\frac{a}{b}-\left(1-\frac{a}{b}\right)^{\binom{b}{a}}\left(\frac{a}{b}\right)
$$

Upper Bound

- For general rational numbers a / b we can tweak Freiling's method to get an upper bound of $\frac{a}{b}-\left(\frac{a}{b}\right)^{\binom{b}{a}}\left(1-\frac{a}{b}\right)$
- Using duality we also get an upper bound of $\frac{a}{b}-\left(1-\frac{a}{b}\right){ }^{\binom{b}{a}}\left(\frac{a}{b}\right)$
- First bound better for $p<1 / 2$, second bound better for $p>1 / 2$.

Upper Bound

- For general rational numbers a / b we can tweak Freiling's method to get an upper bound of $\frac{a}{b}-\left(\frac{a}{b}\right)^{\binom{b}{a}}\left(1-\frac{a}{b}\right)$
- Using duality we also get an upper bound of $\frac{a}{b}-\left(1-\frac{a}{b}\right)^{\binom{b}{a}}\left(\frac{a}{b}\right)$
- First bound better for $p<1 / 2$, second bound better for $p>1 / 2$.
- Lowest terms of a and b is strongest, works best for $\binom{b}{a}$ small.

Future Work

- Multiple hat colours

Future Work

- Multiple hat colours
- Multiple players

Future Work

- Multiple hat colours
- Multiple players
- Open: Does the probability of winning go to zero?

Future Work

- Multiple hat colours
- Multiple players
- Open: Does the probability of winning go to zero?
- Both multiple colours and multiple players.

Thanks

Noga Alon, Aaron Atlee, Joe Buhler, Larry Carter, Joseph DeVincentis, Eric Egge, Chris Freiling, Ron Graham, Jerry Grosman, Tanya Khovanova, Lionel Levine, Stephen Morris, Rob Pratt, J-C Reyes, Jim Roche, Joel Rosenberg,Walter Stromquist, Alan Taylor, Mark Tieffenbruck, Dan Velleman, Stan Wagon, Peter Winkler, Chen Yan, Dmytro Yeroshkin, Piotr Zielinski

