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Recreational Puzzles

I We’ve all heard some hats puzzles before.

I Earliest reference, 1961 Hardin and Taylor ”An Introduction
to Infinite Hat Problems.

I Gardner, 1978 Aha insight! and 1989 Mathematical Induction
and Colored Hats

I Winkler, 2004 Mathematical Puzzles: A Connoisseur’s
Collection
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Our Problem

I Proposed by Levine and Khovanova 2010.

I Two players in a cooperative game.

I Both have infinitely (countable indexed by integers) many
hats placed on there head

I Hats are either black or white. White with probabiity p,
colours independent.

I They choose a hat on there own head simultaneously. Win if
and only if both choose a white hat

I What is the optimal strategy?
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Example-People in a Line

I If you can’t solve a problem, then there is an easier problem
you can solve: find it. George Polya

I 10 people wash up on an island. A monster finds them and
wants to eat them. They beg for mercy

I Monster says that he’ll come back the next day and line them
up and put hats on them.

I One hat a player. Can see players in front of you. Must guess
your own hat colour. Can hear answers of people behind you
first.

I Players who guess wrong are eaten, those who guess right get
shown the way off the isand.
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Example-Example-People in a Line

� � � � �
Back Front
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Back to Levine problem

I The idea in the ”line problem” is that the first guy shares
information.

I Can’t do this here.

I Play is simulataneous.

I Could win with probability p if it wasn’t!!! Which is a clear
upper bound.

I This does at least identify what’s hard here: We can’t share
information!
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Another Classic Problem

I Two players. One hat each.

I Either black or white (50-50 i.i.d), players simutaneously guess
the colour of there own hat.

I Can we beat 1/4?

I Yes! Both players assume that they have the same colour hat
(50-50 chance).

I Win half the time!!!
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Simple Strategy

I Big point here is that we can’t make anyone more likely to
guess right but we can correlate when they both guess right

I Question: How do we do that in the infinite hats case?

I Two simple ways: ”first white/black strategy”.

I First white wins with probability p2

1−(1−p)2
= p

2−p .

I First black turns out to win with probability 2p2

1+p .

I First less likely hat colour is best.
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Can we do Better?

I Yes!!!!

I First idea, try looking at the first two hats only.

I Four things Player 1 could see, so 16 possible strategies for
him.

I 256 group strategies.
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Two hats.

Two hats �� �� �� ��
��
��
��
��
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Two hats �� �� �� ��
�� lose lose lose lose
�� lose
�� lose
�� lose win
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Three hats.

Three hats ∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3}
Picture ��� ��� ��� ��� ��� ��� ��� ���
Choice any 1 3 1 2 2 3 any

Table : Optimal strategy on 3 hats

For convience

White hats ∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3}
Picture ��� ��� ��� ��� ��� ��� ��� ���
Choice 1 1 3 1 2 2 3 1

Table : Optimal strategy on 3 hats
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Three hats-example.

White hats ∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3}
Picture ��� ��� ��� ��� ��� ��� ��� ���
Choice 1 1 3 1 2 2 3 1

Table : Optimal strategy on 3 hats

� �
� �
� �

Player 1 Player 2

Table : Player 1 chooses hat 1, Player 2 hat 2. They win
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Three hats.

White hats ��� ��� ��� ��� ��� ��� ��� ���
���
��� w w
��� w w
��� w w w
��� w w w
��� w w w w
��� w w w w
��� w w w w
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Can we do Better?

I Two hats 256 cases. With a bit of logic can do by hand.

I Three hats 43, 046, 721cases. Not clear way to make it much
easier. Done by computer search.

I k hats (k2
k
)2 cases. Grows ridicoulously fast.

I k = 5 gives 5.42 ∗ 1044 options k = 10 gives 102048 options.

I Hard to design a stretegy.

I So we evolved one
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Algorithm

I Take a random strategy (current parent)

I Compute it’s performance.

I Change it slightly (it’s child)

I If child is better than parent, make child the new parent

I If not eliminate child and make a new one

I Wait a lot of generations
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Algorithm

I Rerun a lot

I Symmetric strategies seem best.

I At some point we only looked at them so we could increase
the number of hats

I With a lot of hats look for a pattern

I We found some

I Took there ”natural” infinite analogs.
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Best known Strategies

I 3 of them all based on the 3-hat strategy

I S1 Look at first 3 if not all the same play 3 hat. If
monochrome disgard hats 1 and 2 for both players and replay
S1

I S2 like S1 but disgard 3 hats instead of 2.

I S3 Dual of S1. Toggle all colours and play S1
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Computing Performance

I We needed to split possible hat configuations into a few cases

I Seven for S1. Each one a geometric series or sum thereof.

I S2 was easier because fewer interactions.

I S3 computed as the dual of S1.
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Computing Performance

VSd (p) = P(AW ,W
Sd (p))

= P(AB,B
S (q))

= p − P(AB,W
S (q))

= p − (q − P(AW ,W
S (q)))

= p − q + P(AW ,W
S (q))

= 2p − 1 + VS(q)

Jonathan Kariv The Mad Hatters



Performance

For our game with probability p of each hat being white, this
strategy gives the following lower bound on V (p):

1.
p(1 + p + p2 + 3p3 − 3p4 + p5)

(1 + p)(2 − p)(1 + p2)
≤ V (p) for p ≤ 1

2 ;

2.
p(1 + 5p − 10p2 + 10p3 − 5p4 + p5)

(2 − 2p + p2)(1 + p)(2 − p)
for 1

2 ≤ p.
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Upper Bound

I First Upper bound Noga Alon 3/8

I New game, with extra information

I We know Player 2 will have either configuaton X or it’s
conjugate (toggeled state)

I Two stratergies for Player 1. Same or different.

I Can get 3/8 with different.

Jonathan Kariv The Mad Hatters



Upper Bound

I First Upper bound Noga Alon 3/8

I New game, with extra information

I We know Player 2 will have either configuaton X or it’s
conjugate (toggeled state)

I Two stratergies for Player 1. Same or different.

I Can get 3/8 with different.

Jonathan Kariv The Mad Hatters



Upper Bound

I First Upper bound Noga Alon 3/8

I New game, with extra information

I We know Player 2 will have either configuaton X or it’s
conjugate (toggeled state)

I Two stratergies for Player 1. Same or different.

I Can get 3/8 with different.

Jonathan Kariv The Mad Hatters



Upper Bound

I First Upper bound Noga Alon 3/8

I New game, with extra information

I We know Player 2 will have either configuaton X or it’s
conjugate (toggeled state)

I Two stratergies for Player 1. Same or different.

I Can get 3/8 with different.

Jonathan Kariv The Mad Hatters



Upper Bound

I First Upper bound Noga Alon 3/8

I New game, with extra information

I We know Player 2 will have either configuaton X or it’s
conjugate (toggeled state)

I Two stratergies for Player 1. Same or different.

I Can get 3/8 with different.

Jonathan Kariv The Mad Hatters



Upper Bound

I First Upper bound Noga Alon 3/8

I New game, with extra information

I We know Player 2 will have either configuaton X or it’s
conjugate (toggeled state)

I Two stratergies for Player 1. Same or different.

I Can get 3/8 with different.

Jonathan Kariv The Mad Hatters



Upper Bound

I For general rational numbers a/b we can tweak Freiling’s

method to get an upper bound of a
b −

(
a
b

)(ba)
(
1 − a

b

)

I Using duality we also get an upper bound of
a
b −

(
1 − a

b

)(ba)
(
a
b

)
I First bound better for p < 1/2, second bound better for

p > 1/2.

I Lowest terms of a and b is strongest, works best for
(b
a

)
small.
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Future Work

I Multiple hat colours

I Multiple players

I Open: Does the probability of winning go to zero?

I Both multiple colours and multiple players.
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